МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета

УТВЕРЖДАЮ

Директор

Шилов С.П

2020 г.

ТЕОРИЯ МАШИН И МЕХАНИЗМОВ

Рабочая программа для обучающихся по направлению подготовки 44.03.04 Профессиональное обучение (по отраслям)
Профиль: Сервис мехатронных систем
Форма обучения очная

Малышева Е.Н. Теория машин и механизмов. Рабочая программа для обучающихся по направлению подготовки 44.03.04 Профессиональное обучение (по отраслям): Сервис мехатронных систем, форма обучения очная. Тобольск, 2020.

Рабочая программа дисциплины опубликована на сайте ТюмГУ: Теория машин и механизмов [электронный ресурс] / Режим доступа: https://tobolsk.utmn.ru/sveden/education/#

[©] Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета, 2020

[©] Малышева Елена Николаевна, 2020

1. Пояснительная записка

Цель: овладение практическими знаниями и умениями в области теории механизмов и машин, необходимыми для реализации профессиональной деятельности по профилю подготовки.

Задачи:

- организация обучения и воспитания в сфере образования с использованием технологий, соответствующих возрастным особенностям обучающихся и отражающих специфику предметной области;
- использование общетехнических знаний для обеспечения эффективной реализации профессионально-педагогической деятельности.

1.1. Место дисциплины в структуре образовательной программы

Дисциплина «Теория машин и механизмов» относится к дисциплинам по выбору части, формируемой участниками образовательных отношений, блока Б1. Учебным планом предусмотрено изучение данной дисциплины в течение D (13) семестра.

– Для освоения дисциплины обучающиеся используют знания и умения, сформированные в ходе изучения следующих дисциплин и практик: Физика материалов (5 сем.), Основы начертательной геометрии и инженерной графики (5, 6 сем.), Эксплуатационная практика (по получению первичных профессиональных навыков и опыта деятельности) (6, 7 сем.), Основы робототехники и сервис мехатронных систем (В, С сем.), Методика обучения видам профессиональной деятельности (В, С сем.)

Изучение данной дисциплины обеспечивает освоение последующих дисциплин и практик:

- Основы теории автоматического управления (Е сем.)
- Основы технического проектирования (F сем.)
- Профессионально-квалификационная практика (D, E сем.)
- Государственный экзамен (G сем.)
- Выпускная квалификационная работа (бакалаврская работа) (G сем.).

1.2. Компетенции обучающегося, формируемые в результате освоения данной дисциплины

Процесс изучения данной дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

ПК-1 Способен реализовывать программы профессионального обучения СПО и (или) ДПП по учебным предметам, курсам, дисциплинам (модулям), практикам

ПК-2 Способен проводить учебно-производственный процесс при реализации образовательных программ различного уровня и направленности

Код и наименование	Планируемые результаты обучения:
компетенции	(знаниевые/функциональные)
ПК-1 Способен	Знает основные понятия и определения теории механизмов и машин
реализовывать	(виды машин и механизмов, виды деталей, разъемные и неразъемные
программы	соединения).
профессионального	Знает средства и способы исследования предметной области
обучения СПО и (или)	прикладной механики (расчетные и графические работы, анализ и
ДПП по учебным	моделирование механизмов).
предметам, курсам,	Может провести исследование предметной области для решения задач в
дисциплинам (модулям),	области теории механизмов и машин: произвести анализ механизмов;
практикам	произвести расчеты на прочность при различных способах
	загруженности элементов механизма, выполнить технический рисунок.

ПК-2 Способен	Знает формы и методы обучения элементам теории механизмов и
проводить учебно-	машин при подготовке студентов СПО
производственный	Может разработать учебно-методические материалы по теории
процесс при реализации	механизмов и машин для подготовки студентов СПО
образовательных	
программ различного	
уровня и направленности	

2. Структура и трудоемкость дисциплины

Таблица 1

Вид учебной работы		Всего часов	Часов в семестре D (13)
Общая трудоемкость зач	. Ед.	5	5
	час	180	180
Из них:			
Часы аудиторной работы (всего):		64	64
Лекции		32	32
Практические занятия		32	32
Лабораторные / практические занятия по подгруппа	M		
Часы внеаудиторной работы, включая самостоятельную работу обучающегося и контро	ЛЬ	116	116
Вид промежуточной аттестации (зачет, диф. Зачет, экзамен)			экзамен

3. Система оценивания

3.1. Текущий контроль

Оценивание результатов освоения дисциплины может осуществляться в рамках балльной системы, разработанной преподавателем и доведенной до сведения обучающихся на первом занятии

Ручи роздажуй	Форму омогунромой роботи	Количество	Макс.
Виды занятий	Формы оцениваемой работы	часов	Балл
Лекции 1-16.	Конспект	32	16
Практические занятия	Практическая работа	32	64
Самостоятельная работа	Отчет	116	20
	Итого	180	100

3.2. Промежуточный контроль

Промежуточная аттестация может быть выставлена с учетом совокупности баллов, полученных обучающимся в рамках текущего контроля.

Перевод баллов в оценки:

Вид аттестации	Соответствие рейтинговых баллов и академических оценок			
	Удовлетворительно	Хорошо	Отлично	
Экзамен	61-75 баллов	76-90 баллов	91-100 баллов	

При отсутствии достаточного количества баллов экзамен сдается в форме собеседования по билетам, в которые входит 2 вопроса.

4. Содержание дисциплины

4.1. Тематический план дисциплины

Таблица 2

			Объем дисциплины, час.			
			Виды аудиторной работы			
No	Раздел	Всего	Лекции	Практические занятия	Лабораторные / практические занятия по подгруппам	Иные виды контактной работы
1	Базовые понятия теории механизмов и машин.	60	10	10		
2	Базовые понятия сопротивления материалов.	60	10	10		
3	Детали машин и основы конструирования	60	12	12		
	Итого (часов)	180	32	32		

4.2. Содержание дисциплины по темам

4.2.1. Темы лекций

Раздел 1. Базовые понятия теории механизмов и машин

Лекция 1. Понятие о машине и механизмах.

Машина, механизм, части машин: детали, агрегаты, приводы. Классификации машин. Простые механизмы.

Лекция 2. Структура и классификация механизмов.

Звенья и кинематические пары механизмов. Кинематические цепи. Степень подвижности механизмов. Классификация механизмов

Лекция 3. Кинематика плоских механизмов

Задачи и методы кинематического анализа плоских механизмов. Аналитический способ кинематического исследования механизмов. Графоаналитические методы кинематического исследования механизмов: метод планов.

Лекция 4-5. Динамика плоских механизмов

Задачи и методы динамического анализа плоских механизмов. Графоаналитические методы динамического исследования механизмов: метод планов.

Раздел 2. Базовые понятия сопротивления материалов

Лекция 6. Основные положения сопротивления материалов.

Исходные понятия. Метод сечений. Внутренние силы. Напряжения.

Лекция 7-10. Деформации балки.

Растяжение и сжатие. Срез (сдвиг). Кручение. Изгиб.

Раздел 3. Детали машин и основы конструирования

Лекция 11-13. Детали машин и их соединения.

Классификация деталей машин. Основные критерии работоспособности. Стандартизация. Разъемные и неразъемные соединения деталей и узлов машин. Сварные соединения. Клеевые и паяные соединения. Соединения деталей с натягом. Резьбовые соединения. Клиновые и штифтовые соединения. Шпоночные и шлицевые соединения.

Лекция 14-16. Механические передачи движения.

Фрикционные передачи. Зубчатые передачи. Редукторы. Мультипликаторы. Планетарные передачи. Червячные передачи. Ременные передачи. Цепные передачи. Оси и валы. Опоры качения. Опоры скольжения. Муфты приводов

4.2.2. Темы практических занятий

№	Тема	час.	
Практическая работа 1.	Кинематический анализ плоского кривошипно-	2	
	ползунного механизма. Метод планов.		
Практическая работа 2.	Кинетостатический анализ плоского кривошипно-	4	
	ползунного механизма. Метод планов.		
Практическая работа 3.	Коллоквиум 1 (в форме работы проектного офиса).	4	
Практическая работа 4.	Построение эпюры поперечных сил и изгибающих	4	
	моментов для простой балки.		
Практическая работа 5.	Построение эпюры внутренних усилий для простейшей		
	одноконтурной рамы.		
Практическая работа 6.	Коллоквиум 2 (в форме деловой игры)		
Практическая работа 7.	Расчет на прочность зубьев цилиндрических передач.		
Практическая работа 8.	Анализ надежности деталей ручного домкрата.		
Практическая работа 9.	Исследование строения механизмов и приводов		
	учебных мехатронных систем.		
Практическая работа 10.	Коллоквиум 3 (в форме учебной конференции)		
	Итого	32	

4.2.3. Образцы средств для проведения текущего контроля

Текущий контроль осуществляется проверкой наличия конспектов лекций, выполнения заданий в ходе лабораторных занятий, проверочных работ и самостоятельной работы

Задания к практическим занятиям

Практическая работа 1. Кинематический анализ плоского кривошипно-ползунного механизма. Метод планов.

В задаче рассматривается кривошипно-ползунный механизм в определенный момент времени в заданном масштабе μ_l . Также заданы направление и величина угловой скорости и углового ускорения его ведущего звена — кривошипа. Требуется определить кинематические характеристики рабочего звена — ползуна в рассматриваемый момент времени, используя метод планов. Решение задачи нужно выполнять на миллиметровой бумаге.

Алгоритм решения задачи:

- 1. Выполнить план положения механизма на миллиметровой бумаге. Обозначить звено 0 (стойка) точка O, звено I (кривошип) отрезок OA, звено 2 (шатун) AB, звено 3 (ползун) точка B.
- 2. Определить по плану длину звеньев 1 и 2. Для этого измерить линейкой отрезки OA и AB. Умножив отрезок на масштаб μ_l , получить длину звена.

3. Найти линейную скорость v_A точки A, учитывая, что кривошип совершает вращательное движение вокруг точки O:

$$v_A = \omega_1 \cdot OA$$
.

4. Шатун совершает плоскопараллельное движение, поэтому скорость точки B:

$$v_B = v_A + v_{BA}$$
.

Здесь V_{BA} - скорость точки B во вращательном движении вокруг точки A.

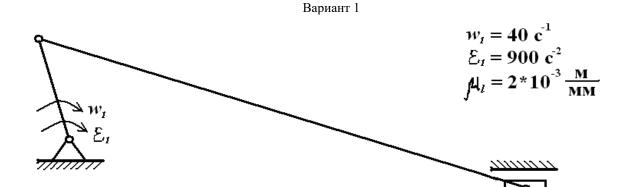
- 5. Выбрать масштаб μ_{v} для плана скоростей и изобразить план скоростей на миллиметровой бумаге, учитывая, что направление v_{A} перпендикулярно кривошипу и направлено в сторону его вращения, направление v_{BA} перпендикулярно шатуну, а скорость v_{B} , согласно движению ползуна, направлена горизонтально. Для этого от произвольной точки p_{v} (полюс плана скоростей) отложить отрезки $p_{v}a$, $p_{v}b$ и ab. Они обозначают соответственно скорости v_{A} , v_{B} и v_{BA} .
 - 6. С помощью линейки и выбранного масштаба μ_{v} определить скорости v_{B} и v_{BA} .
- 7. Линейное ускорение a_A точки A удобно рассмотреть в виде двух взаимно перпендикулярных составляющих, направление которых известно. Нормальное ускорение a_A^n (вдоль звена к точке О) и тангенциальное ускорение a_A^τ (перпендикулярно звену и нормальному ускорению в сторону углового ускорения):

$$\overline{a}_A = \overline{a}_A + \overline{a}_A.$$

Определить их величину:

$$a_A^n = \omega_1^2 \cdot OA$$
, $a_A^\tau = \varepsilon_1 \cdot OA$.

8. Ускорение точки B


$$\overline{a}_B = \overline{a}_A + \overline{a}_{BA}.$$

Учитывая, что относительное ускорение a_{BA} также можно разложить на нормальное и тангенциальное, то

$$\overline{a}_B = \overline{a}_A^n + \overline{a}_A^{-\tau} + \overline{a}_{BA}^{-\tau} + \overline{a}_{BA}^{-\tau}$$

- 9. Выбрать масштаб μ_a для плана ускорений и изобразить план ускорений на миллиметровой бумаге, учитывая направление нормальных и тангенциальных ускорений, а также то, что направление движения ползуна (значит, и направление ускорения точки B) горизонтально.
- 10. С помощью линейки и выбранного масштаба μ_a определить все неизвестные ускорения.

Варианты заданий

Практическая работа 2. Кинетостатичский анализ плоского кривошипно-ползунного механизма. Метод планов.

Задачей данного кинетостатического расчета является определение сил, действующих в кинематических парах кривошипно-ползунного механизма и его уравновешивающего момента. Схема механизма приведена в задании 1. Кривошип совершает равномерное вращение с угловой скоростью ω_1 ($\varepsilon=0$). Для расчета используется метод планов сил.

Алгоритм решения задачи:

- 1. Механизм расчленить на группу начальных звеньев и группы с нулевой степенью свободы (группы Ассура). В данном случае это звено *1* (кривошип) группа начальных звеньев, звенья 2-3 группа Ассура.
- 2. Действие отсоединенных звеньев заменить силами реакций. Расчет нужно начать с последней группы, закончить начальным звеном.
- 3. К звеньям приложить силы тяжести, а также соответствующие силы инерции и моменты сил инерции, учитывая, что точка приложения силы инерции центр масс (середина) звена:

$$F_u = -m \cdot \overline{a}_C$$
.

Величину и направление ускорения центра масс a_C можно найти с помощью плана ускорений.

4. Записать для каждой группы уравнения равновесия сил и моментов в векторном виде:

$$\sum F = 0, \sum m(F) = 0.$$

- 5. Построить план сил в масштабе μ_F .
- 6. Используя линейку и выбранный масштаб, найти неизвестные силы.

Вариант 1 Вариант 2 Массы звеньев: $m_1 = 0.5 \text{ kg}$ Массы зве

Массы звеньев: $m_1=0.5~{\rm kr},$ массы звеньев: $m_1=0.5~{\rm kr},$ $m_2=2~{\rm kr},$ $m_3=2~{\rm kr}$ $m_3=2~{\rm kr}$

Задания для самостоятельной работы

Самостоятельная работа используется для подготовки к практическим занятиям, для подготовки к профессионально-педагогической деятельности, а также для оценки знаний и умений по отдельным темам дисциплины (задания).

Задание 3. Разработка конспекта теоретического урока

Найдите примеры использования гидравлики (или пневматики) для конструирования элементов механизмов. Подготовьте конспект обобщающего урока с мультимедийной презентацией для обучающихся СПО в рамках изучения общетехнических дисциплин.

Источник:

Жуков, В. А. Детали машин и основы конструирования: Основы расчета и проектирования соединений и передач : учеб. Пособие / В.А. Жуков. — 2-е изд. — Москва : ИНФРА-М, 2018. — 416 с. — (Высшее образование: Бакалавриат). —

www.dx.doi.org/10.12737/7597. - Текст : электронный. — URL: https://new.znanium.com/read?id=300329 - (дата обращение 10.08.2019). Режим доступа: по подписке ТюмГУ. – С. 45-53.

5. Учебно-методическое обеспечение и планирование самостоятельной работы обучающихся

Таблица 3

№ темы	Раздел	Темы	Виды СРС
1.	Базовые	Практические работы 1-2.	Доработка и оформление.
		Задание 1. Разработка конспекта практического	Конспект 1.
	механизмов и	занятия	
	машин.	Повторение и изучение материала лекций,	Коллоквиум 1 (в форме
		дополнительной литературы	работы проектного
			офиса).
2.	Базовые	Практические работы 4-5.	Доработка и оформление.
	понятия	Задание 2. Разработка лабораторной работы с	Конспект 2.
	сопротивления	инструкционной картой.	
	материалов.	Повторение и изучение материала лекций,	Коллоквиум 2 (в форме
		дополнительной литературы	деловой игры).
3.	Детали машин	Практические работы 7-9.	Доработка и оформление.
	и основы	Задание 3. Разработка конспекта теоретического	Конспект 3.
	конструирован	урока	
	ия	Повторение и изучение материала лекций,	Коллоквиум 3 (в форме
		дополнительной литературы	учебной конференции).

6. Промежуточная аттестация по дисциплине (модулю)

6.1.Оценочные материалы для проведения промежуточной аттестации по дисциплине

Экзамен является формой оценки качества освоения обучающимся основной профессиональной образовательной программы по разделам дисциплины, демонстрирует сформированные навыки и компетенции. По результатам экзамена обучающемуся выставляется оценка «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно».

В билет входит 2 вопроса: теоретический и методический.

Теоретические вопросы

Раздел 1. Базовые понятия теории механизмов и машин

- 1. Понятие о машине и механизме. Классификация машин. Простые механизмы.
- 2. Звенья и кинематические пары механизмов.
- 3. Кинематические цепи. Степень подвижности механизмов. Классификация механизмов.
- 4. Аналитический способ кинематического исследования механизмов.
- 5. Графоаналитические методы кинематического исследования механизмов. Метод планов.
- 6. Расчет скоростей и ускорений точек кривошипно-ползунного механизма.

Раздел 2. Базовые понятия сопротивления материалов

- 7. Исходные понятия сопротивления материалов. Виды элементов конструкции. Виды стержней.
- 8. Сосредоточенная и распределенная нагрузка. Интенсивность.
- 9. Внутренние силы. Напряжения. Виды деформаций.
- 10. Метол сечений.

- 11. Внутренние усилия при растяжении и сжатии.
- 12. Деформация при растяжении и сжатии. Закон Гука при растяжении и сжатии.

Раздел 3. Детали машин и основы конструирования

- 13. Классификация деталей машин. Основные критерии работоспособности. Стандартизация.
- 14. Неразъемные соединения деталей и узлов машин. Сварные соединения. Клеевые и паяные соединения.
- 15. Разъемные соединения деталей и узлов машин. Соединения деталей с натягом. Резьбовые соединения.
- 16. Разъемные соединения деталей и узлов машин. Клиновые и штифтовые соединения. Шпоночные и шлицевые соединения.
- 17. Механические передачи движения. Фрикционные передачи. Зубчатые передачи. Редукторы. Мультипликаторы. Планетарные передачи. Червячные передачи. Ременные передачи. Цепные передачи. Оси и валы. Опоры качения. Опоры скольжения. Муфты приводов
- 18. Основы проектирования механизмов и машин.

Методический вопрос

Поясните особенности изучения понятий (из 1 вопроса) студентами СПО на примере конкретной специальности (рабочей профессии).

Критерии выставления оценки за экзамен

Оценка «отлично»:

- Результаты освоения программы дисциплины соответствуют повышенному уровню в соответствии с установленными критериями (п. 6.2).
- Свободно отвечает на дополнительные вопросы.

Оценка «хорошо»:

- Результаты освоения программы дисциплины соответствуют базовому уровню в соответствии с установленными критериями.
- Частично отвечает на дополнительные вопросы.

Оценка «удовлетворительно»:

- Результаты освоения программы дисциплины соответствуют пороговому уровню в соответствии с установленными критериями.
- Затрудняется отвечать на дополнительные вопросы.

6.2. Критерии оценивания компетенций:

Таблица 4

Карта критериев оценивания компетенций

Код и наименование	Индикаторы достижения	Оценочные	Критерии
компетенции	компетенций, соотнесенные с	материалы	оценивания
	планируемыми результатами		
	обучения		
ПК-1 Способен	Знает основные понятия и	Практическая	Пороговый уровень:
реализовывать	определения теории механизмов	работа 1.	может выполнять
программы	и машин (виды машин и	Практическая	работы под
профессионально	механизмов, виды деталей,	работа 2.	контролем
го обучения СПО	разъемные и неразъемные	Практическая	преподавателя.
и (или) ДПП по	соединения).	работа 4.	Базовый уровень:
учебным	Знает средства и способы	Практическая	может выполнять
предметам,	исследования предметной	работа 5.	работы

Код и наименование		Оценочные	Критерии
компетенции	компетенций, соотнесенные с	материалы	оценивания
	планируемыми результатами		
	обучения		
курсам,	области прикладной механики	Практическая	самостоятельно.
дисциплинам	(расчетные и графические	работа 7.	Повышенный
(модулям),	работы, анализ и моделирование	Практическая	уровень: готов
практикам	механизмов).	работа 8.	выполнять работы в
	Может провести исследование	Практическая	условиях учебно-
	предметной области для решения	работа 9.	воспитательного
	задач в области теории	Экзамен.	процесса с
	механизмов и машин: произвести		обучающимися.
	анализ механизмов; произвести		
	расчеты на прочность при		
	различных способах		
	загруженности элементов		
	механизма, выполнить		
	технический рисунок.		
ПК-2 Способен	Знает формы и методы обучения	Практическая	Пороговый уровень:
проводить	элементам теории механизмов и	работа 3.	может выполнять
учебно-	машин при подготовке студентов	Практическая	работы под
производственны	СПО	работа 6.	контролем
й процесс при		Практическая	преподавателя.
реализации		работа 10.	Базовый уровень:
образовательных		Экзамен.	может выполнять
программ	Может разработать учебно-	СР: Задание 1.	работы
различного	методические материалы по	СР: Задание 2.	самостоятельно.
уровня и	теории механизмов и машин для	СР: Задание 3.	Повышенный
направленности	подготовки студентов СПО		уровень: готов
			выполнять работы в
			условиях учебно-
			воспитательного
			процесса с
			обучающимися.

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

7.1 Основная литература:

1. Прикладная механика : учеб. пособие / В.Т. Батиенков, В.А. Волосухин, С.И. Евтушенко [и др.]. — Москва : РИОР : ИНФРА-М, 2019. — 2-е изд., доп. и перераб. — 339 с. + Доп. материалы [Электронный ресурс; Режим доступа http://new.znanium.com]. — (Высшее образование). — https://doi.org/10.12737/24838. - Текст : электронный. - URL: https://new.znanium.com/read?id=339952 - Режим доступа: по подписке ТюмГУ.

7.2 Дополнительная литература:

- 1. Жуков, В. А. Детали машин и основы конструирования: Основы расчета и проектирования соединений и передач: учеб. пособие / В.А. Жуков. 2-е изд. Москва: ИНФРА-М, 2019. 416 с. URL: https://znanium.com/read?id=327803 Режим доступа: по подписке ТюмГУ.
- 2. Олофинская, В. П. Техническая механика. Сборник тестовых заданий : учеб. пособие / В.П. Олофинская. 2-е изд., испр. и доп. Москва : ФОРУМ : ИНФРА-М, 2019. 132 с. (Среднее профессиональное образование). Текст : электронный. URL: https://new.znanium.com/read?id=340268 Режим доступа: по подписке ТюмГУ.
- 3. Прикладная механика: учебник: В 2 частях Часть 2: Основы структурного, кинематического и динамического анализа механизмов : учеб. пособие / А.Н. Соболев,

А.Я. Некрасов, Ю.И. Бровкина. — Москва : КУРС : НИЦ ИНФРА-М, 2017. - 160 с. — (Бакалавриат). - Текст : электронный. - URL: https://new.znanium.com/read?id=18015 — Режим доступа: по подписке ТюмГУ.

7.3 Интернет-ресурсы:

Электронный фонд правовой и нормативно-технической документации. — URL: http://docs.cntd.ru — Режим доступа: свободный.

Портал федеральных учебно-методических объединений в среднем профессиональном образовании. – URL: https://fumo-spo.ru – Режим доступа: свободный.

Справочник кодов общероссийских классификаторов. – URL: https://classinform.ru – Режим доступа: свободный.

7.4. Современные профессиональные базы данных и информационные справочные системы:

- 1. Электронно-библиотечная система издательства «Лань» URL: https://e.lanbook.com/ Режим доступа: по подписке ТюмГУ.
- 2. Электронно-библиотечная система Znanium.com URL: https://znanium.com/ Режим доступа: по подписке ТюмГУ.
- 3. IPR BOOKS URL: http://www.iprbookshop.ru/ Режим доступа: по подписке ТюмГУ.
- 4. Научная электронная библиотека eLIBRARY.RU URL: https://www.elibrary.ru/defaultx.asp Режим доступа: по подписке ТюмГУ.
- 5. Межвузовская электронная библиотека (МЭБ) URL: https://icdlib.nspu.ru/ Режим доступа: по подписке ТюмГУ.
- 6. Национальная электронная библиотека (НЭБ) URL: https://rusneb.ru/ Режим доступа: по подписке ТюмГУ.
 - 7. Ивис URL: https://dlib.eastview.com/ Режим доступа: по подписке ТюмГУ.
 - 8. Библиотека ТюмГУ https://library.utmn.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

– Интернет-браузер для работы с интернет-ресурсами и информационными справочными системами;

Лицензионное ПО, в том числе, отечественного производства:

Microsoft Office 2003, Microsoft Office 2007, Microsoft Office 2010, Windows, Dr.
 Web, Autodesk AutoCAD 2018.

Свободно распространяемое ПО, в том числе, отечественного производства:

- Microsoft Teams интернет-приложение, платформа для электронного обучения.
- 9. Технические средства и материально-техническое обеспечение дисциплины (молуля)

Мультимедийная учебная аудитория семинарского типа № 407 УК5 на 28 посадочных мест для проведения лекционных, практических (лабораторных) занятий оснащена следующими техническими средствами обучения и оборудованием:

Ноутбук 8 шт. (Intel Celeron N3060 1,6 ГГц; DDR3 4 ГБ; SSD 128 ГБ; MS Windows 10; MS Office 2010), **мобильная ЖК-панель** (Sharp LC-65CUG8052E: 3840x2160; 65 дюймов), доска аудиторная; модели механизмов (8 шт.).

На ПК установлено следующее программное обеспечение:

— Офисное ПО: операционная система MS Windows, офисный пакет MS Office, платформа MS Teams, офисный пакет LibreOffice, антивирусное ПО Dr. Web. Обеспечено проводное подключение ПК сети Интернет.

Мультимедийная учебная аудитория семинарского типа № 311 на 24 рабочих места с компьютерным классом на 15 рабочих мест для проведения индивидуальных и групповых консультаций, для самостоятельной работы оснащена следующими техническими средствами обучения и оборудованием:

15+1 ПК (Dell 3060-7601: Intel Core i5 8500Т 2,1 ГГц; DDR4 8 ГБ; SSD 256 ГБ; Dell SE2216H: 1920х1080; 21,5 дюйма; MS Windows 10; MS Office 2010), **проектор** (Epson EB-980W: 1280х800; 3800 лм), **экран** (16:10)

На ПК установлено следующее программное обеспечение:

— Офисное ПО: операционная система MS Windows, офисный пакет MS Office, платформа MS Teams, офисный пакет LibreOffice, антивирусное ПО Dr. Web.

Обеспечено проводное подключение ПК к локальной сети и сети Интернет.