МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета

УТВЕРЖДАЮ

Директор

Шилов С.П 2020 г.

ГЕОМЕТРИЯ

Рабочая программа для обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки) Профили: математика; информатика Форма обучения очная

Малышева Е.Н., Валицкас А.И. Геометрия. Рабочая программа для обучающихся по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки): математика; информатика, форма обучения очная. Тобольск, 2020.

Рабочая программа дисциплины опубликована на сайте ТюмГУ: Геометрия [электронный ресурс] / Режим доступа: https://tobolsk.utmn.ru/sveden/education/#

[©] Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета, 2020

[©] Малышева Елена Николаевна, 2020

[©] Валицкас Алексей Игоревич, 2020

1. Пояснительная записка

Цель формирование систематических знаний в области геометрии и ее методов, овладение современным математическим аппаратом, необходимым для реализации профессиональной деятельности по профилю подготовки.

Задачи:

- формирование у студентов системы представлений о понятиях и фактах дисциплины «Геометрия», о геометрических методах и возможностях их применения для решения математических и прикладных задач;
- познакомить с современными направлениями развития геометрии, формирование уровня математической культуры, достаточного для осознанной ориентации в многообразии учебной литературы по школьному и вузовскому курсу геометрии;
- дать базовое теоретическое обоснование обязательных разделов школьного курса геометрии, необходимых для формирования профессиональных компетенций.

1.1. Место дисциплины в структуре образовательной программы

Дисциплина «Алгебра» относится к обязательным дисциплинам вариативной части блока Б1. Учебным планом предусмотрено изучение данной дисциплины в течение 1-3 семестров.

Для освоения дисциплины используются знания, умения и виды деятельности, сформированные в процессе изучения предметов «Математика», «Информатика» на предыдущем уровне образования. Дисциплина «Математический анализ», наряду с дисциплинами «Алгебра» и «Геометрия», является фундаментом высшего математического образования. Знания и умения, формируемые в процессе изучения дисциплины, будут использоваться в дальнейшем при освоении дисциплин вариативной части профессионального цикла: «Теория функций», «Функциональный анализ», «Дифференциальные уравнения», «Физика» и др.

1.2. Компетенции обучающегося, формируемые в результате освоения данной дисциплины

Процесс изучения данной дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

OK-3 способность использовать естественнонаучные и математические знания для ориентирования в современном информационном пространстве;

ПК-4 способность использовать возможности образовательной среды для достижения личностных, метапредметных и предметных результатов обучения и обеспечения качества учебно-воспитательного процесса средствами преподаваемого учебного предмета.

Код и наименование компетенции	Компонент
	(знаниевый/функциональный)
ОК-3 способность использовать	Знает основные понятия и доказательства фактов
естественнонаучные и	основных разделов курса аналитической
математические знания для	геометрии (понятие вектора, линейные операции
ориентирования в современном	с векторами, скалярное, векторное и смешанное
информационном пространстве	произведение векторов; уравнения прямой линии
	и плоскости; линии второго порядка: эллипс,
	гипербола и парабола; аффинную классификацию
	линий второго порядка; поверхности второго
	порядка: эллипсоид; гиперболоид; параболоид;
	цилиндр; конические поверхности;
	прямолинейные образующие).

Код и наименование компетенции	Компонент
	(знаниевый/функциональный)
	Умеет применять теоретические знания к
	решению типовых геометрических задач
	(выполнять действия с векторами в координатах,
	находить уравнения прямых и плоскостей по
	определяющим их точкам или векторам,
	применять метод координат при решении
	геометрических задач, находить параметры
	кривых второго порядка по их каноническим и
	общим уравнениям, приводить общее уравнение
	кривой второго порядка к каноническому виду).
ПК-4 способность использовать	Знает области приложения знаний по геометрии в
возможности образовательной среды	содержании школьного курса математики
для достижения личностных,	Может составить алгоритм решения задачи по
метапредметных и предметных	геометрии для использования в учебном процессе
результатов обучения и обеспечения	и пояснить решение типовых школьных задач
качества учебно-воспитательного	
процесса средствами преподаваемого	
учебного предмета	

2. Структура и трудоемкость дисциплины

Таблина 1

				т аолица .	
Вид учебной работы		n	Часов в семестре		
		Всего часов	3	4	
Общая трудоемкость зач	ч. ед.	7	3	4	
	час	252	108	144	
Из них:					
Часы аудиторной работы (все	го):	102	54	48	
Лекции	-	34	18	16	
Практические занятия		68	36	32	
Лабораторные / практические					
занятия по подгруппам					
Часы внеаудиторной работы,					
включая самостоятельную работу		150	54	96	
обучающегося					
Вид промежуточной аттестации (зачет, диф. зачет, экзамен)				экзамен	
			зачет	контрольная работа	

3. Система оценивания

3.1. Текущий контроль

Текущий контроль осуществляется в форме собеседования по вопросам к коллоквиуму, решения проверочных работ.

Оценивание результатов освоения дисциплины может осуществляться в рамках балльной системы, разработанной преподавателем и доведенной до сведения обучающихся на первом занятии

		Количес	Макс.
№ темы	Формы оцениваемой работы	ТВО	количество
		часов	баллов
	Итого	72	100
	3 семестр		
Лекции 1-9	Конспекты	18	18
	Вопросы к коллоквиуму.		
Практические	Решение задач.	36	72
занятия 1-18	Решение задачи и объяснение решения у		
	доски.		
	Коллоквиум.		
Самостоятельная	Домашние задания.	40	10
работа	Проверочные работы.		
	Подготовка к экзамену		
	Итого	72	100
	4 семестр		
Лекции 1-8	Конспекты	16	16
	Вопросы к коллоквиуму.		
Практические	Решение задач.	32	64
занятия 1-16	Решение задачи и объяснение решения у		
	доски.		
	Коллоквиум.		
Самостоятельная	Домашние задания.	96	20
работа	Проверочные работы.		
	Подготовка к экзамену		
	Итого	144	100

3.2. Промежуточный контроль

Промежуточная аттестация проходит в форме собеседования по вопросам к зачету или экзамену и решения контрольной работы.

- 3 семестр (зачет) собеседование по вопросам и решение задачи;
- 4 семестр (экзамен) контрольная работа и собеседование по билетам (теоретический вопрос и решение примера).

Промежуточная аттестация может быть выставлена с учетом совокупности баллов, полученных обучающимся в рамках текущего контроля.

Перевод баллов в оценки:

Вид	Соответствие рейтинговых баллов и академических оценок			
аттестации	Зачтено	Удовлетворительно	Хорошо	Отлично
Экзамен	61-100 баллов	61-75 баллов	76-90 баллов	91-100 баллов

4. Содержание дисциплины

4.1. Тематический план дисциплины

		(Объег	м учебн	ой нагр	узки (час.)
			Виды аудиторной			ой	
			работы				
№	Темы	Всего	Лекции	Практические занятия	Лабораторные / практические	занятия по подгруппам	Иные виды контактно й работы
	3 семестр					*/	
1	Векторы на плоскости и в пространстве, сложение и вычитание векторов, их свойства. Умножение вектора на число. Теорема о коллинеарных векторах. Линейная зависимость векторов и ее свойства. Базис на плоскости и в пространстве. Разложение вектора по векторам базиса. Коллинеарность и компланарность векторов. Линейные	24	8	16			
	операции в координатах.	24		10			
2	Скалярное произведение векторов. Аффинная и прямоугольная декартова системы координат на плоскости и в пространстве. Уравнение прямой в аффинной системе координат. Уравнение прямой в прямоугольной декартовой системе координат.	24	6	12			
3	Угол между прямыми на плоскости, взаимное	24	4	8			
	расположение двух прямых на плоскости.	2 '	•				
	Расстояние от точки до прямой						
	Итого	108	18	36			
	4 семестр						
1	Ориентация пространства. Векторное произведение векторов и его свойства. Смешанное произведение векторов и его свойства. Различные способы задания плоскости. Общее уравнение плоскости. Взаимное расположение двух плоскостей. Угол между плоскостями. Расстояние от точки до плоскости в пространстве.	16	6	10			
2	Различные способы задания прямой в пространстве. Взаимное расположение двух прямых в пространстве. Расстояние от точки до прямой и между двумя скрещивающимися прямыми в пространстве. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.	18	4	10			
3	Эллипс и его свойства. Гипербола и ее	20	6	12			
	свойства. Парабола и ее свойства. Классификация линий 2-го порядка.						
	Итого	144	16	32			
	Итого	252	34	68			

4.2. Содержание дисциплины по темам

4.2.1. Лекции

3 семестр

- 1. Векторы на плоскости и в пространстве, сложение и вычитание векторов, их свойства. Умножение вектора на число. Теорема о коллинеарных векторах. Линейная зависимость векторов и ее свойства. Базис на плоскости и в пространстве. Разложение вектора по векторам базиса. Коллинеарность и компланарность векторов. Линейные операции в координатах.
- 2. Скалярное произведение векторов. Аффинная и прямоугольная декартова системы координат на плоскости и в пространстве. Уравнение прямой в аффинной системе координат. Уравнение прямой в прямоугольной декартовой системе координат.
- 3. Угол между прямыми на плоскости, взаимное расположение двух прямых на плоскости. Расстояние от точки до прямой.

4 семестр

- 1. Ориентация пространства. Векторное произведение векторов и его свойства. Смешанное произведение векторов и его свойства. Различные способы задания плоскости. Общее уравнение плоскости. Взаимное расположение двух плоскостей. Угол между плоскостями. Расстояние от точки до плоскости в пространстве.
- 2. Уравнения прямой в пространстве в аффинной системе координат. Прямая, заданная пересечением плоскостей. Взаимное расположение двух прямых в пространстве. Расстояние от точки до прямой и между двумя скрещивающимися прямыми в пространстве. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.
- 3. Эллипс. Гипербола. Парабола. Определение линии второго порядка и приведение её уравнения к каноническому виду. Аффинная классификация линий второго порядка.

4.2.1. Темы практических занятий

3 семестр

Практическая работа 1. Векторы на плоскости и в пространстве, сложение и вычитание векторов, их свойства. Умножение вектора на число.

Практическая работа 2. Линейная зависимость векторов и ее свойства. Базис на плоскости и в пространстве. Разложение вектора по векторам базиса.

Практическая работа 3. Коллинеарность и компланарность векторов. Линейные операции в координатах.

Практическая работа 4. Скалярное произведение векторов.

Практическая работа 5. Уравнение прямой в аффинной системе координат.

Практическая работа 6. Уравнение прямой в прямоугольной декартовой системе координат.

Практическая работа 7. Коллоквиум «Прямая на плоскости»

Практическая работа 8. Угол между прямыми на плоскости, взаимное расположение двух прямых на плоскости. Расстояние от точки до прямой.

Практическая работа 9. Контрольная работа 1

4 семестр

Практическая работа 1. Ориентация пространства. Векторное произведение векторов и его свойства.

Практическая работа 2.. Смешанное произведение векторов и его свойства.

Практическая работа 3. Уравнение плоскости в пространстве при различных способах задания. Взаимное расположение двух плоскостей.

Практическая работа 4. Угол между плоскостями. Расстояние от точки до плоскости в пространстве. Различные способы задания прямой в пространстве. .

Практическая работа 5. Взаимное расположение двух прямых в пространстве. Расстояние от точки до прямой и между двумя скрещивающимися прямыми в пространстве.

Практическая работа 6. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью.

Практическая работа 7. Эллипс и его свойства.

Практическая работа 8. Гипербола и ее свойства. Парабола и ее свойства.

Практическая работа 9. Аффинная классификация линий второго порядка

Практическая работа 10. Контрольная работа 2

4.2.3. Образцы средств для проведения текущего контроля

Вопросы к коллоквиуму

Вопросы к коллоквиуму 1. «Прямая на плоскости»

- 1. Прямая на плоскости, заданная точкой и направляющим вектором, каноническое и параметрическое уравнение. Примеры.
- 2. Прямая на плоскости, заданная двумя точками и ее уравнение.
- 3. Уравнение прямой на плоскости в отрезках. Примеры.
- 4. Прямая на плоскости, заданная точкой и ортогональным вектором и ее уравнение. Примеры.
- 5. Прямая на плоскости, заданная точкой и угловым коэффициентом и ее уравнение. Примеры.
- 6. Общее уравнение прямой. Направляющий и ортогональный вектор к прямой, заданной общим уравнением. Примеры.
- 7. Угол между прямыми заданными направляющими и ортогональными векторами, общими уравнениями. Примеры.
- 8. Угол между прямыми, заданными угловыми коэффициентами. Примеры.
- 9. Взаимное расположение прямых, заданных общими уравнениями. Примеры.
- 10. Расстояние от точки до прямой. Примеры.
- 11. Какое место тема занимает в школьном курсе математики? Приведите примеры.

Вопросы к коллоквиуму 2. «Векторные пространства»

- 1. Скалярное, векторное и смешанное произведение векторов. Примеры
- 2. Различные уравнения плоскости в пространстве. Уравнение плоскости, заданной точкой и двумя направляющими векторами. Уравнение плоскости, заданной тремя точками. Примеры.
- 3. Общее уравнение плоскости и его исследование.
- 4. Угол между плоскостями. Расстояние от точки до плоскости. Примеры.
- 5. Различные способы задания прямой в пространстве. Параметрическое и каноническое уравнение прямой уравнение прямой, заданной точкой и направляющим вектором. Уравнение прямой, заданной двумя точками. Примеры.
- 6. Прямая, заданная пересечением плоскостей. Примеры.
- 7. Взаимное расположение двух прямых в пространстве. Угол между прямыми, заданными направляющими векторами. Примеры.
- 8. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Примеры.

9. Какое место тема занимает в школьном курсе математики? Приведите примеры.

Вопросы к коллоквиуму 3. «Линии и поверхности II-го порядка»

- 1. Эллипс. Определение эллипса, вывод уравнения, исследование формы эллипса по его уравнению. Эксцентриситет, директрисы и директориальное свойство эллипса. Касательная к эллипсу. Примеры.
- 2. Гипербола. Определение гиперболы, вывод уравнения, исследование формы гиперболы по ее уравнению. Асимптоты, эксцентриситет, директрисы и директориальное свойство гиперболы. Касательная к гиперболе. Примеры.
- 3. Парабола. Определение параболы, вывод уравнения, исследование формы параболы по ее уравнению. Различные виды канонического уравнения параболы. Касательная к параболе. Примеры.
- 4. Общее уравнение линии второго порядка в прямоугольной декартовой системе координат. 9 канонических уравнений линий второго порядка.
- 5. Какое место тема занимает в школьном курсе математики? Приведите примеры.

Контрольные работы

Контрольная работа 1 (3 семестр)

Вариант 1

- 1. Даны 3 вершины треугольника A(1,-1), B(-3,3), C(3,4). Вычислите какую-нибудь тригонометрическую функцию угла ABC.
- 2. Даны 3 вершины треугольника A(2, 1), B(-2, 1), C(1, 6). Найдите длину вектора высоты CH высоту и площадь треугольника ABC.
- 3. Напишите уравнение прямой, проходящей через точку A(5, 3) перпендикулярно прямой $3 \times x 2 \times y + 4 = 0$.
 - 4. Даны три вершины треугольника A(2,3), B(4,1), C(5,2). Составьте уравнение:
 - а) медианы, проведённой из точки С.
 - в) высоты, опущенной из т. А.

Вариант 2

- 1. Даны 3 вершины треугольника A(-1,1), B(3,-3), C(3,0). Вычислите какую-нибудь тригонометрическую функцию угла ABC.
- 2. Даны 3 вершины треугольника A(3,0), B(-1,3), C(5,5). Найдите длины его сторон, координаты и длину вектора медианы AO.
- 3. Напишите уравнение прямой, проходящей через точку A(5,3) параллельно прямой $3 \times x 2 \times y + 4 = 0$.
 - 4. Даны три вершины треугольника A(2,3), B(4,2), C(6,2). Составьте уравнение:
 - а) медианы, проведённой из точки А.
 - в) высоты, опущенной из т. А.

Контрольная работа 2 (4 семестр)

Вариант 1

- 1. Напишите каноническое и параметрическое уравнения прямой, проходящей через точку $M_0(3,0,1)$ параллельно вектору $\vec{a}(2,5,6)$.
- 2. Найдите угол между плоскостями π : 2x + y z = 0 и σ : x 3y + 2z 1 = 0.
- 3. Напишите уравнение плоскости, проходящей через точку $M_0(1, 2, 3)$ параллельно векторам $\vec{a}(2, 3, 4)$ и $\vec{b}(1, 5, 2)$.

4. Даны вершины тетраэдра A(0, 0, 0), B(1, -3, 0), C(1, 2, 0), Д(0, 0, 5). Найдите объем и длину высоты этого тетраэдра, опущенного из вершины Д.

5. Найдите угол между прямой $\frac{x-2}{1} = \frac{y}{3} = \frac{z+2}{-2}$ и плоскостью 3x - y - 2z - 3 = 0.

Вариант 2

- 1. Напишите уравнения плоскости, проходящей через точку М(-1,3,0) перпендикулярно вектору \vec{m} (2, -1, 1).
- 2. Найдите угол между прямыми:

$$\frac{x+2}{1} = \frac{y-1}{2} = \frac{z}{3}$$
 \mathbf{u} $\frac{x-5}{2} = \frac{y-2}{1} = \frac{z-4}{3}$.

3. Напишите каноническое уравнения прямой, заданной уравнениями:

$$\begin{cases} 2x + y - 3z + 1 = 0 \\ 4x - y + 2z + 5 = 0 \end{cases}$$

- **4.** Даны вершины тетраэдра A(4, 2, 5), B(0, 2, 2), C(0, 2, 7), Д(1, 5, 0). Найдите объем тетраэдра и длину высоты этого тетраэдра, опущенного из вершины Д.
- **5.** Найдите угол между прямой $\frac{x+1}{3} = \frac{y}{-2} = \frac{z-1}{1}$ и плоскостью 2x + 3y z 6 = 0.

Контрольная работа 3 (4 семестр)

Часть 1.

Привести уравнения линий и поверхностей II-го порядка к каноническому аффинному виду:

- 1. $2 \cdot x^2 x \cdot y + y^2 = 0$
- 2. $-x \cdot y + 2 \cdot y \cdot z = 0$ 3. $-x^2 + x \cdot y y^2 y 1 = 0$

Часть 2.

- 1. Сделайте анализ школьных учебников по предмету «Геометрия»: не менее 5 авторских линеек, рекомендованных для использования в школе, не старше 5 лет, по одной из категорий (тем) предметной области «Геометрия» (по вариантам).
- 2. Отчет структурируйте: авторы, класс, тип учебника (общеобразовательный или профильный), тема, основные понятия, уровень сложности материала, наличие примеров и задач различного уровня сложности с примерами, особенности.
- 3. Сделайте подбор примеров и задач по уровням сложности: не менее 20 примеров и не менее 10 задач на каждый уровень (базовый, повышенный, творческий). Подборку сделать для конкретного класса.

Вариант	Понятийная линия (тема)			
1.	Линейная зависимость векторов и ее свойства. Базис на плоскости и в			
	пространстве. Разложение вектора по векторам базиса.			
2.	Коллинеарность и компланарность векторов. Линейные операции в			
	координатах.			
3.	Скалярное произведение векторов.			
4.	Уравнение прямой в аффинной системе координат.			
5.	Уравнение прямой в прямоугольной декартовой системе координат.			
6.	Угол между прямыми на плоскости.			
7.	Взаимное расположение двух прямых на плоскости. Расстояние от точки до			
	прямой			

8.	Линейная зависимость векторов и ее свойства. Базис на плоскости и в		
	пространстве. Разложение вектора по векторам базиса.		
9.	Ориентация пространства. Векторное произведение векторов и его свойства		
10.	Смешанное произведение векторов и его свойства.		
11.	Различные виды уравнений плоскости в пространстве. Их использование		
	при решении геометрических задач.		
12.	Взаимное расположение двух плоскостей. Угол между плоскостями		
13.	Расстояние от точки до плоскости в пространстве		
14.	Различные способы задания прямой в пространстве. Взаимное расположение		
	двух прямых в пространстве. Угол между прямыми.		
15.	Расстояние от точки до прямой и между двумя скрещивающимися прямыми		
	в пространстве		
16.	Взаимное расположение прямой и плоскости. Угол между прямой и		
	плоскостью.		
17.	Квадратичные формы. Аффинная и декартова классификации квадратичных		
	форм.		
18.	Аффинная и декартова классификации линий и поверхностей ІІ-го порядка		
19.	Эллипс и его свойства.		
20.	Парабола и ее свойства.		
21.	Гипербола и ее свойства.		
22.	Цилиндры и конусы. Их свойства		
23.	Поверхности вращения и их свойства		
24.	Параболоиды и гиперболоиды. Их свойства		

Проверочные работы

Тест 1. Входной тест «Векторы и операции над ними»

1 вариант

І уровень

Выбрать номер правильного ответа

- **1.** Закончить фразу: два вектора называются коллинеарными, если направленные отрезки их порождающие:
 - а) параллельны одной и той же плоскости;
 - б) параллельны одной и той же прямой;
 - в) взаимно перпендикулярны.

Варианты ответов: 1) первое; 2)второе; 3) третье; 4) все истинны.

- 2. Закончить фразу: два вектора называются компланарными, если направленные отрезки их порождающие:
 - а) параллельны одной и той же плоскости;
 - б) параллельны одной и той же прямой;
 - в) попарно взаимно перпендикулярны.

Варианты ответов: 1) а; 2) б; 3) в; 4) все 3 неверны.

- 3. Какое из высказываний истинно:
 - 1) если векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны, то векторы \vec{a} и \vec{b} коллинеарны;
- 2) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны;

- 3) если векторы \vec{a} и \vec{b} коллинеарны, то векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны. Варианты ответов: 1) первое; 2)второе; 3) третье; 4) все истинны.
- 4. Сформулировать и изобразить:
 - а) правило треугольников,
- б) определение разности векторов, изобразить разность векторов (имеющих общее начало).
- **5.** Сформулировать и изобразить:
 - а) правило параллелограмма,
 - б) определение умножения вектора на скаляр.

II уровень

- **6.** Закончить фразу: скалярное произведение векторов \vec{a} (2,3), (4,1), и \vec{b} (4,1) равно....
 - **7.** Закончить фразу: угол между векторами $\vec{a}(1,5,1)$ и $\vec{b}(2,1,\frac{2}{3})$ равен ...
 - **8.** Закончить фразу: пусть A(2,3), B(4,1). Длина вектора \overrightarrow{AB} равна

Выбрать номер правильного ответа:

9. Если векторы \overrightarrow{AB} (-6, -5, 2), \overrightarrow{BC} (2, 3, -4) и \overrightarrow{CD} (3, -5, 1) являются сторонами четырехугольника ABCD, то модуль скалярного произведения векторов - диагоналей этого четырехугольника равен...

Варианты ответов: 1) 8; 2) 9; 3) 10; 4) 11; 5) 12.

III уровень

10. Если в параллелограмме ABCD заданы $\overrightarrow{CB}(2, -1, 4)$, $\overrightarrow{CD}(-3, 2, 1)$, A(5, -3, 2), то сумма координат точки C равна...

Варианты ответов: 1) 1; 2) -1; 3) 2; 4) -2; 5) 3.

Вариант 2

I уровень

Выбрать номер правильного ответа

- **1.** Закончить фразу: два вектора называются коллинеарными, если направленные отрезки их порождающие:
 - а) параллельны одной и той же плоскости;
 - б) параллельны одной и той же прямой;
 - в) взаимно перпендикулярны.

Варианты ответов: 1) а; 2) б; 3) в; 4) все 3 неверны.

- **2**. Какое из определений верно: конечная система векторов $a_1, a_2, ..., a_n$, называется линейно зависимой, если
- а) она содержит нулевой вектор; б) существуют отличные от нуля скаляры $\alpha_1,\alpha_2,...,\alpha_n\in R$ такие, что $\alpha_1a_1+\alpha_2a_2+...\alpha_na_n=\vec{0}$.
 - в) для любых $\alpha_1, \alpha_2, ..., \alpha_n \in R$

$$\alpha_1 a_1 + \alpha_2 a_2 + ... \alpha_n a_n = \vec{0} \implies \alpha_1 = 0, \alpha_2 = 0, ..., \alpha_n = 0.$$

Варианты ответов: 1) а; 2) б; 3) в; 4) все 3 неверны; 4) а, б.

- 3. Какое из высказываний истинно:
- 1) если векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны, то векторы \vec{a} и \vec{b} коллинеарны;
- 2) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны;
 - 3) если векторы \vec{a} и \vec{b} коллинеарны, то векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны. Варианты ответов: 1) первое; 2)второе; 3) третье; 4) все истинны.
 - 4. Сформулировать и изобразить:
 - а) правило треугольников,
- б) определение разности векторов, изобразить разность векторов (имеющих общее начало).

II уровень

- **5.** Найти скалярное произведение векторов $\vec{a}(2;-1)$ и $\vec{b}(2;3)$, координаты которых заданы в ортонормированном базисе и вычислить косинус угла между ними.
- **6.** Даны три вершины треугольника A(2,1), B(-2,1), C(1,6). Найти длины сторон треугольника, длину медианы CM, длину высоты CH и площадь треугольника ABC.

III уровень

7. Найти длину биссектрисы *BD* в задаче № 6.

Вариант 2

<u> I уровень</u> Выбрать номер правильного ответа

- **1.** Закончить фразу: два вектора называются компланарными, если направленные отрезки их порождающие:
 - а) параллельны одной и той же плоскости;
 - б) параллельны одной и той же прямой;
 - в) попарно взаимно перпендикулярны.

Варианты ответов: 1) а; 2) б; 3) в; 4) все 3 неверны.

- **2**. Какое из определений верно: конечная система векторов $a_1, a_2, ..., a_n$, называется линейно независимой, если
 - а) она не содержит нулевой вектор;
- б) существуют одновременно не равные нулю скаляры $\alpha_1, \alpha_2, ..., \alpha_n \in R$ такие, что $\alpha_1 a_1 + \alpha_2 a_2 + ... \alpha_n a_n = \vec{0}$.
 - в) для любых $\alpha_1,\alpha_2,...,\alpha_n \in R$ $\alpha_1a_1+\alpha_2a_2+...\alpha_na_n=\vec{0} \Rightarrow \alpha_1=0,\alpha_2=0,...,\alpha_n=0$. Варианты ответов: 1) а; 2) б; 3) в; 4) все 3 неверны; 4) а, в.
- **3.** Среди векторов $\vec{a}_1=-3e_2$, $\vec{a}_2=-2e_1+5e_3$, $\vec{a}_3=2e_2-e_3$, $\vec{a}_4=4e_3$, $\vec{a}_5=e_1$, $\vec{a}_6=e_2-3e_3$, $\vec{a}_7=e_1-2e_2+3e_3$, $\vec{a}_8=\vec{0}$, заданных в базисе $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$, указать все векторы компланарные с векторами $\{\vec{e}_2,\vec{e}_3\}$.

Варианты ответов: 1) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_5\}$; 2) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_5,\vec{a}_8\}$; 3) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_6,\vec{a}_8\}$; 4) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_6\}$

4. Сформулировать и изобразить:

- а) правило параллелограмма,
- г) определение умножения вектора на скаляр.

II уровень

- **5.** Найти скалярное произведение векторов $\vec{a}(-1;2)$ и $\vec{b}(3;2)$, координаты которых заданы в ортонормированном базисе и вычислить косинус угла между ними.
- **6.** Даны три вершины треугольника A(1,2), B(6,1), C(1,-2). Найти длины сторон треугольника, длину медианы CM, длину высоты BH и площадь треугольника ABC.

III уровень

7. Найти длину биссектрисы *BD* в задаче № 6.

Тест 2.

Выбрать номер правильного ответа

1. Среди векторов $\vec{a}_1(0,-3,0)$, $\vec{a}_2(-2,0,5)$, $\vec{a}_3(0,2,-1)$, $\vec{a}_4(0,0,4)$, $\vec{a}_5(1,0,0)$, $\vec{a}_6(0,1,-3)$, $\vec{a}_7(1,-2,3)$, $\vec{a}_8(0,0,0)$, заданных в базисе $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$, указать все векторы компланарные с векторами $\{\vec{e}_2,\vec{e}_3\}$.

Варианты ответов: 1) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_5\}$; 2) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_5,\vec{a}_8\}$; 3) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_6,\vec{a}_8\}$; 4) $\{\vec{a}_1,\vec{a}_3,\vec{a}_4,\vec{a}_6\}$

2. Какое из определений верно?

Базисом векторного пространства называется такая упорядоченная система векторов этого пространства, которая удовлетворяет двум условиям:

- 1) векторы этой системы линейно независимы;
 - всякий вектор пространства является линейной комбинацией векторов этой системы.
- 2) векторы этой системы линейно независимы;
- хотя бы один вектор пространства является линейной комбинацией векторов этой системы.

Варианты ответов: 1) первое; 2) второе; 3) оба верны; 4) оба неверны.

- **3.** Какими из свойств, аналогичных следующим свойствам произведения чисел, обладает скалярное произведение векторов:
 - а) если ab = 0, то хотя бы одно из чисел a и b равно нулю;
 - б) ab = ba; в) если ab = cb и $b \ne 0$, то a = c; г) (a + b)c = ac + bc;
 - $\mathbf{g}(bc) = (ab)c$?

Варианты ответов: 1) а, δ ; 2) δ , ϵ ; 3) a, ϵ ; 4) δ , δ .

4. Какие из указанных свойств могут служить необходимым и достаточным условием того, чтобы четырехугольник ABCD был параллелограммом: a) $\overrightarrow{AB} = \overrightarrow{DC}$; б) $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OD}$, где O – произвольная точка; в) $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$; г) $\overrightarrow{MD} - \overrightarrow{MC} = \overrightarrow{CD}$, где M – точка пересечения диагоналей.

Варианты ответов: 1) а, б, г; 2) б, в, г; 3) а, б, в; 4) а, в, г.

5. Какое из высказываний является истинным: а) если три вектора линейно зависимы, то они компланарны; б) три вектора линейно зависимы, когда они компланарны.

Варианты ответов: 1) первое; 2) второе; 3) оба истинны; 4) оба ложны.

6. Векторы называются линейно зависимыми, если их линейная комбинация равна $\vec{0}\dots$

Вместо многоточия вставить номер условия, при котором все высказывание оказалось бы истинным. 1) при любом наборе коэффициентов; 2) если хотя бы один из коэффициентов не равен 0; 3) если все коэффициенты не равны 0; 4) если все коэффициенты равны 0.

Варианты ответов: 1); 2); 3); 4).

- 7. Какое из высказываний истинно:
- 1) если векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны, то векторы \vec{a} и \vec{b} коллинеарны;
- 2) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны;
- 3) если векторы \vec{a} и \vec{b} коллинеарны, то векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны. Варианты ответов: 1) первое; 2)второе; 3) третье; 4) все истинны.
- **8.** Дан вектор $\vec{d}(\alpha, \beta, \gamma)$ относительно базиса $B = \{\vec{a}, \vec{b}, \vec{c}\}$ векторного пространства V. Каковы координаты вектора $-\vec{d}$ относительно базиса $B' = \{\vec{a}, -\frac{1}{2}\vec{b}, \vec{c}\}$?

Варианты ответов: 1) $\vec{d}(-\alpha,2\beta,-\gamma)$; 2) $\vec{d}(-\alpha,\frac{1}{2}\beta,-\gamma)$; 3) $\vec{d}(\alpha,-2\beta,\gamma)$; 4) $\vec{d}(\alpha,-\frac{1}{2}\beta,\gamma)$

9. Какой угол образуют в пространстве векторы $\vec{a}(1,5,1)$ и $\vec{b}(2,1,\frac{2}{3})$

Самостоятельные работы

Самостоятельная работа 1. Различные способы задания прямой на плоскости

Вариант 1

- 1. Написать уравнение прямой, заданной
 - а) точкой и направляющим вектором;
 - б) точкой и ортогональным вектором;
 - в) в отрезках a и b.
- **2.** Написать уравнение прямой, проходящей через точку A (5, 3) перпендикулярно прямой 3x 2y + 4 = 0.
- **3.** Даны три вершины треугольника A(2,3), B(4,1), C(5,2). Составить уравнение а) медианы, проведённой из точки С. в) высоты, опущенной из т. А.
- **4.** Найти точку симметричную данной точке P(5,6) относительно прямой, проходящей чрез точку A(2,2) под углом 45° к прямой 3x + y 4 = 0.

Вариант 2

- 1. Написать уравнение прямой, заданной
 - а) двумя точками;
 - б) общее уравнение прямой;
 - в) точкой и угловым коэффициентом.
- **2.** Написать уравнение прямой, проходящей через точку A (1,2) параллельно прямой

$$5x + 7y - 2 = 0$$
.

- **3.** Даны три вершины треугольника A(3,1), B(1,3), C(5,2). Составить уравнение а)медианы, проведённой из точки C.
 - в) высоты, опущенной из т. А.
- **4.** Найти точку симметричную данной точке P(2,3) относительно прямой, проходящей через точку A(4,2) под углом 45° к прямой 3x + y 1 = 0.

Самостоятельная работа 2. Взаимное расположение прямых. Угол между прямыми

Вариант 1

1. Как расположены прямые, заданные уравнениями:

$$l_1: 5x-2y+4=0 \text{ M } l_2: 7x+3y-2=0.$$

- 2. Определить расстояние от точки M(3, 4) до прямой, проходящей через точку A(2, 1) параллельно прямой x + 2y 5 = 0.
- 3. Определить угол между двумя прямыми:

$$l_1: 3x-2y+1=0$$
 и $l_2: 5x+y+1=0$.

Вариант 2

1. Как расположены прямые, заданные уравнениями:

$$l_1: 3x + 2y - 5 = 0$$
 и $l_2: 6x + 4y - 3 = 0$.

- **2.** Определить расстояние от точки M(4, 3) до прямой, проходящей через точку A(1, 2) перпендикулярно прямой -x + 4y + 6 = 0.
- 3. Определить угол между двумя прямыми:

$$l_1: 2x + 3y - 4 = 0 \text{ if } l_2: 3x - 2y + 5 = 0.$$

Самостоятельная работа 3. Векторное и смешанное произведение. Уравнения плоскости

- **1.** Определить координаты векторного произведения $a \times b$ и его длину $|\vec{a} \times \vec{b}|$, если даны векторы \vec{a} (2, 1, 3) и \vec{b} (1, 2, -3). \vec{a} (0, 1, 0). Вычислить смешанное произведение векторов $(\vec{c}, \vec{d}, \vec{p})$, если \vec{c} (2, 3, -1) и \vec{d} (1, -1, 3), \vec{p} (1, 9, -11). Будут ли векторы $(\vec{c}, \vec{d}, \vec{p})$ компланарными?
- **2.** Напишите уравнение плоскости, проходящей через точку A(3,0,1) параллельно векторам $\vec{a}(2,5,6)$ и $\vec{b}(1,2,1)$.
- **3.** Напишите уравнение плоскости, проходящей через три точки A(1, 3, 5), B(0,2,2), C(0,2,7).
- **4**. Напишите уравнение плоскости, проходящей через точку M(1, 3, 5) перпендикулярно вектору $\overrightarrow{m}(2, 7, 3)$.
- **5.** Даны вершины тетраэдра A(0,0,0), B(1,-3,0), C(1,2,0), Д(0,0,5).Найдите объем и длину высоты этого тетраэдра, опущенного из вершины A.

Самостоятельная работа 4. Различные способы задания плоскостей в пространстве. Взаимное расположение и угол между плоскостями

Указать номер правильного ответа

1. Скалярное произведение $\vec{a} \cdot \vec{b}$ векторов \vec{a} (1, 0, 1) и \vec{b} (2, 3, 4) равно Варианты ответов

2. Векторное произведение $\vec{a} \times \vec{b}$ векторов \vec{a} (1, 0, 1) и \vec{b} (2, 3, 4) равно Варианты ответов

3. Смешанное произведение векторов \vec{a} (2, 1, 0), \vec{b} (1, 3, 4) и \vec{c} (0, 1, 5) равно Варианты ответов

4. Уравнение плоскости, проходящей через точку M_0 (1, 0, 2) перпендикулярно вектору \vec{m} (1, 2, 5) имеет вид

Варианты ответов

1)
$$x + 2z - 11 = 0$$
; 2) $x + 2y + 5z - 11 = 0$; 3) $2x - 2z = 0$.

- **5.** Закончить фразу: плоскости Π_1 : x + 2y 3z + 4 = 0 и Π_2 : 2x + 4y 6z + 5 = 0 Варианты ответов
 - 1) пересекаются по одной прямой; 2) совпадают; 3) параллельны.
- **6.** Закончить фразу: угол между плоскостями Π_1 :

$$2x + 2y - 3z + 4 = 0$$
 $u \Pi_2:5x + 4y + 6z + 5 = 0...$

Варианты ответов

1)
$$180^{0}$$
: 2) 90^{0} : 3) 0^{0} .

Самостоятельная работа 5. Различные способы задания прямых и плоскостей в пространстве.

Вариант 1

1. Напишите все виды уравнений плоскости, проходящей через точку A(4, -2, 5) и прямую l, заданную пересечением двух плоскостей:

$$\begin{cases} 2x - y + z - 10 = 0 \\ x + 4y - 5z + 4 = 0 \end{cases}$$

2. Составить уравнение плоскости, проходящей через прямую l_1

$$\begin{cases} x=1+3t\\ y=3+2t., t\in R \text{ , параллельную прямой } l_2 \begin{cases} 2x-y+z-3=0\\ x+2y-z-5=0 \end{cases}.$$

3. Составить уравнение плоскости, проходящие через две параллельные прямые

$$l_1$$
: $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}$ $\text{ II } l_2$: $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+3}{-2}$.

4. Напишите все виды уравнений плоскости, проходящие через 2 прямые:

$$l_1: \begin{cases} 2x - y + z - 1 = 0 \\ x + 4y - 5z + 4 = 0 \end{cases}$$
 w $l_2: \frac{x - 5}{1} = \frac{y - 5}{11} = \frac{z - 5}{9}$.

Вариант 2

- **1.** Напишите каноническое и параметрическое уравнения прямой, проходящей через точку $\vec{a}(3, 4, 7)$.
- **2.** Напишите прямой, проходящей через точки A(3, 0, 1) и B(0, 2, 2).
- 3. Напишите уравнение плоскости, проходящей через прямую

$$\frac{x-3}{1} = \frac{y-2}{3} = \frac{z-1}{4}$$
, параллельно прямой $\frac{x-5}{2} = \frac{y-2}{1} = \frac{z-4}{3}$.

4. Найдите угол между плоскостями:

$$2x + 2y - z = 0$$
 и $x - 2$ $y - 3z - 1 = 0$.

- **5**. Найдите угол между прямой $\frac{x-2}{1} = \frac{y}{3} = \frac{z+2}{-2}$ и плоскостью 3x y 2z 3 = 0.
- **6.** Даны вершины тетраэдра A(0, 0, 0), B(1, -3, 0), C(1, 2, 0), D(0, 0, 5). Найдите длину высоты этого тетраэдра, опущенной из вершины A.

Самостоятельная работа 6. Взаимное расположение прямых в пространстве

1. Как расположены прямые l_1 и l_2 ? Найти расстояние между ними.

$$l_1$$
: $\frac{x-5}{1} = \frac{y-5}{1} = \frac{z-5}{1}$ $\bowtie l_2$: $\frac{x-1}{5} = \frac{y-1}{5} = \frac{z-1}{5}$.

2. Как расположены прямые l_1 и l_2 ? Найти расстояние между ними.

$$1_1: \frac{x-5}{1} = \frac{y-5}{1} = \frac{z-5}{1} \quad u \mid_{2}: \begin{cases} x = 1+5t \\ y = 1-2t, t \in R. \end{cases}$$

3. Как расположены прямые l_1 и l_2 ? Найти расстояние между ними.

$$l_1: \frac{x-4}{3} = \frac{y-3}{1} = \frac{z+2}{-4} \ u \ l_2: \begin{cases} x = 5-6t \\ y = -6-2t, \ t \in R. \end{cases}$$
$$z = 3+8t$$

4. Как расположены прямые l_1 и l_2 ? Найти расстояние между ними.

$$1_1: \begin{cases} x = 2 + t \\ y = 1 - t, t \in R \ u \mid_2 : \begin{cases} x - y - 2z - 1 = 0 \\ 2x + y - z + 7 = 0 \end{cases}$$

Самостоятельная работа 7. Эллипс, гипербола и парабола

Вариант 1

- **1.** Напишите уравнение эллипса, фокусы которого лежат симметрично относительно начала координат, если а) $F_1(-8, 0)$, $F_2(8, 0)$ и a = 10 большая полуось; б) $F_1(-4, 0)$, $F_2(4, 0)$ и $x = \pm \frac{25}{4}$ уравнения директрис;
 - в) B(0, 6) вершина, F(3, 0) фокус.
- **2.** Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная:
 - а) F(5, 0) фокус и b = 4 мнимая полуось;
 - б) 2c = 6 (фокальное расстояние), $\varepsilon = \frac{3}{2}$ (эксцентриситет); в) $y = \pm \frac{4}{3}x \frac{1}{3}$

уравнения асимптот и F(-10, 0) – фокус.

- **3.** Составить уравнение параболы, вершина которой находится в начале координат, зная что: а) парабола расположена симметрично относительно оси Ox и проходит через точку M(9; 6); б) парабола расположена симметрично относительно оси Ox и проходит через точку M(-1; 3).
- **4.** Даны уравнения асимптот гиперболы $y = \pm 3x$ и уравнения директрис $x = \pm 1$. Составить каноническое уравнение гиперболы.

Вариант 2

1. Напишите уравнение эллипса, фокусы которого лежат симметрично относительно начала координат, если а) $F_1(-4, 0)$, $F_2(4, 0)$ и b = 3 – малая полуось;

б)
$$F_1(-8, 0)$$
, $F_2(8, 0)$ и $x = \pm \frac{25}{2}$ – уравнения директрис;

- в) B'(0, -3) вершина, F(5, 0) фокус.
- **2.** Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная: а) F(6, 0) фокус и a = 5 действительная полуось; б) 2c = 8 (фокальное расстояние), $\varepsilon = \frac{4}{3}$ (эксцентриситет); в) $y = \pm \frac{5}{2}x$ уравнения асимптот и $F(\sqrt{29}, 0)$ фокус.
- **3.** Составить уравнение параболы, вершина которой находится в начале координат, зная что: а) парабола расположена симметрично относительно оси ОУ и проходит через точку M(1;1); б) парабола расположена симметрично относительно оси ОУ и проходит через точку M(4;-8).
- **4.** Даны уравнения асимптот гиперболы: $y = \pm 3x$ и уравнения директрис $x = \pm 1$. Составить каноническое уравнение гиперболы.

Самостоятельная работа 8. Кривые второго порядка

1. Изобразить линии второго порядка:

a)
$$2x^2 + 4y^2 = 9$$
;
b) $4x^2 - y^2 = -4$;
b) $y^2 = 4x - 3$.

- **2.** Составить уравнение параболы, вершина которой находится в начале координат, зная что:
 - а) парабола расположена симметрично относительно оси Ox и проходит через точку M(9; 6);
 - б) парабола расположена симметрично относительно оси Ox и проходит через точку M(-1; 3).

5. Учебно-методическое обеспечение и планирование самостоятельной работы обучающихся

Самостоятельная работа студентов предполагает изучение теоретического материала по актуальным вопросам дисциплины. Рекомендуется самостоятельное изучение доступной учебной и научной литературы, периодических, научнопрактических, аналитических и экспертных изданий. Степень овладения знаниями и практическими навыками определяется в процессе текущего и итогового контроля.

Таблина 3

		т аолица Э
No		
разд	Тема	Виды СРС
ела		
	3 семестр	
1.	Входной контроль «Векторы и операции над ними»	Тест 1.
		Выполнение домашних заданий.
2.	Линейная зависимость векторов и ее свойства. Базис	Выполнение домашних заданий.
	на плоскости и в пространстве. Разложение вектора	Самостоятельная работа 1.
	по векторам базиса.	Подготовка к коллоквиуму.
3.	Коллинеарность и компланарность векторов.	Самостоятельная работа 1.
	Линейные операции в координатах.	Выполнение домашних заданий.
		Подготовка к коллоквиуму.
4.	Скалярное произведение векторов.	Самостоятельная работа 1.
	•	Выполнение домашних заданий.

No		
разд	Тема	Виды СРС
ела	2	
5.	Уравнение прямой в аффинной системе координат.	Самостоятельная работа 1.
• •	o passioned apparent 2 wp printers and round the opposite	Выполнение домашних заданий.
6.	Уравнение прямой в прямоугольной декартовой	Самостоятельная работа 1.
	системе координат.	Выполнение домашних заданий.
	опотомо координат.	Подготовка к коллоквиуму.
7.	Угол между прямыми на плоскости.	Самостоятельная работа 2.
' .	з тол между примыми на илоскости.	Выполнение домашних заданий.
		Подготовка к коллоквиуму.
8.	Взаимное расположение двух прямых на плоскости.	Самостоятельная работа 2.
0.	Расстояние от точки до прямой	Выполнение домашних заданий.
	т исстолине от то ки до примон	Подготовка к коллоквиуму.
9.	Повторение материала, подготовка к зачету	Контрольная работа 1.
).	повторение материала, подготовка к зачету	Коллоквиум 1.
	4 семестр	Коллоквиум 1.
1.	Ориентация пространства. Векторное произведение	Тест 2.
1.	векторов и его свойства	Выполнение домашних заданий.
2.	*	Самостоятельная работа 3.
۷.	Смешанное произведение векторов и его свойства.	Выполнение домашних заданий.
3.	Рознични о ручи и у з ориомий индомуссти. В	
Э.	Различные виды уравнений плоскости в пространстве. Их использование при решении	Самостоятельная работа 4. Выполнение домашних заданий.
	геометрических задач.	Выполнение домашних задании.
4.	Взаимное расположение двух плоскостей. Угол	Самостоятельная работа 4.
4.	между плоскостями	Выполнение домашних заданий.
5.		Выполнение домашних задании.
	Расстояние от точки до плоскости в пространстве	
6.	Различные способы задания прямой в пространстве.	Самостоятельная работа 5.
	Взаимное расположение двух прямых в	Выполнение домашних заданий.
	пространстве. Угол между прямыми.	
7.	Расстояние от точки до прямой и между двумя	Выполнение домашних заданий.
	скрещивающимися прямыми в пространстве	
8.	Взаимное расположение прямой и плоскости. Угол	Самостоятельная работа 6.
	между прямой и плоскостью.	Выполнение домашних заданий.
		Коллоквиум 2.
		Контрольная работа 2.
9.	Эллипс и его свойства.	Самостоятельная работа 7.
		Выполнение домашних заданий.
10.	Парабола и ее свойства.	Самостоятельная работа 7.
		Выполнение домашних заданий.
11.	Гипербола и ее свойства.	Самостоятельная работа 7.
		Выполнение домашних заданий.
12.	Повторение материала, подготовка к экзамену	Контрольная работа 3.
		Коллоквиум 3.

6. Промежуточная аттестация по дисциплине (модулю)

6.1.Оценочные материалы для проведения промежуточной аттестации по дисциплине

Вопросы к зачету (3 семестр)

- 1. Направленные отрезки. Векторы. Сложение и вычитание векторов, свойства.
- 2. Умножение вектора на число, Свойства. Линейная зависимость и независимость векторов. Признак коллинеарности и компланарности векторов.

- 3. Разложение вектора по трем некомпланарным векторам. Базис векторного пространства. Координаты вектора, свойства.
- 4. Ортонормированный базис. Длина вектора. Скалярное произведение векторов. Угол между векторами.
- 5. Аффинная и прямоугольная системы координат на плоскости. Деление отрезка в данном отношении.
- 6. Прямая на плоскости, заданная точкой и направляющим вектором, каноническое и параметрическое уравнение. Примеры.
 - 7. Прямая на плоскости, заданная двумя точками и ее уравнение.
 - 8. Уравнение прямой на плоскости в отрезках. Примеры.
- 9. Прямая на плоскости, заданная точкой и ортогональным вектором и ее уравнение. Примеры.
- 10. Прямая на плоскости, заданная точкой и угловым коэффициентом и ее уравнение. Примеры.
- 11. Общее уравнение прямой. Направляющий и ортогональный вектор к прямой, заданной общим уравнением. Примеры.
- 12. Угол между прямыми заданными направляющими и ортогональными векторами, общими уравнениями. Примеры.
 - 13. Угол между прямыми, заданными угловыми коэффициентами. Примеры.
 - 14. Взаимное расположение прямых, заданных общими уравнениями. Примеры.
 - 15. Расстояние от точки до прямой. Примеры.

Задачи к зачету (3 семестр)

- **1**. а) Являются ли векторы $\vec{p}_1 = 7\vec{a}$ и $\vec{p}_2 = 3\sqrt{5}\vec{a}$ коллинеарными ?
- б) Среди векторов $\vec{a}_1(0,-3,0)$, $\vec{a}_2(-2,0,5)$, $\vec{a}_3(0,2,-1)$, $\vec{a}_4(0,0,4)$, $\vec{a}_5(1,0,0)$, $\vec{a}_6(0,1,-3)$, $\vec{a}_7(1,-2,3)$, $\vec{a}_8(0,0,0)$, заданных в базисе $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$, указать все векторы компланарные с векторами $\{\vec{e}_2,\vec{e}_3\}$.
- **2.** Найти скалярное произведение векторов $\vec{a}(2;-1)$ и $\vec{b}(2;3)$, координаты которых заданы в ортонормированном базисе и вычислить косинус угла между ними.
- **3.** Даны 3 вершины треугольника A(1, -1), B(-3, 3), C(3, 4). Вычислить какую-нибудь функцию угла ABC.
- **4.** Даны 3 вершины треугольника A(3, 0), B(-1, 3), C(5, 5). Найти длины его сторон, координаты и длину вектора медианы AO.
- **5.** Даны 3 вершины треугольника A(2, 1), B(-2, 1), C(1, 6). Найти длину вектора высоты CH и площадь треугольника ABC.
- **6.** Даны 3 вершины треугольника A(1,-1), B(-3,3), C(3,4). Найти площадь треугольника ABC.
- 7. Напишите уравнение прямой, параллельной вектору $\vec{a}(1, 3)$ и проходящей через точку M(3, 1).
- **8.** Найдите уравнение прямой, проходящей через точку A(1; 2) параллельно прямой 4x 5y + 10 = 0
- **9.** Найдите угловой коэффициент прямой, проходящей через точку A(1; 2) перпендикулярно прямой 3x y + 4 = 0.
- **10.** Даны вершины треугольника: A(4, 6), B(-4, 0), C(-1, -4). Составить уравнения:
- a) трех сторон; δ) медианы, проведенной из точки C; a) высоты, опущенной из точки A на сторону BC.
- **11.** Определить расстояние от точки M(3, 4) до прямой, проходящей через точку A(2, 1) параллельно прямой x + 2y 5 = 0.
- **12.** Указать номер правильного ответа в каждом задании. Система координат прямоугольная.

1). Скалярное произведение векторов $\vec{a}(1,0,1)$ и $\vec{b}(2,3,4)$ равно:

2). Векторное произведение векторов $\vec{a}(1,0,1)$ и $\vec{b}(2,3,4)$ имеет координаты:

3). Смешанное произведение векторов $\vec{a}(2,1,0), \vec{b}(1,3,4), \vec{c}(0,1,5)$ равно:

4). Уравнение плоскости, проходящей через точку M_0 (1, 0, 2) перпендикулярно вектору $\vec{m}(1,2,5)$ имеет вид:

1)
$$x + 2z - 11 = 0$$
; 2) $x + 2y + 5z - 11 = 0$; 3) $2x - 2z = 0$.

- **13.** Напишите уравнение плоскости, проходящей через точку A(3, 0, 1) параллельно векторам $\vec{a}(2, 5, 6)$ и $\vec{b}(1, 0, 2)$.
- **14.** Напишите уравнение плоскости, проходящей через три точки: A(4, 6, 1), B(-1, 2, 0), C(1, 0, 4).

Вопросы к экзамену (4 семестр)

- 1. Ориентация пространства. Примеры.
- 2. Векторное произведение векторов. Примеры.
- 3. Скалярное и смешанное произведения векторов. Примеры.
- 4. Различные уравнения плоскости в пространстве. Уравнение плоскости, заданной точкой и двумя направляющими векторами. Уравнение плоскости, заданной тремя точками. Примеры.
 - 5. Уравнение плоскости, заданной точкой и ортогональным вектором.
 - 6. Общее уравнение плоскости и его исследование.
 - 7. Взаимное расположение двух плоскостей в пространстве. Примеры.
 - 8. Угол между двумя плоскостями. Примеры.
 - 9. Расстояние от точки до плоскости. Примеры.
- 10. Различные способы задания прямой в пространстве. Параметрическое и каноническое

уравнения прямой, заданной точкой и направляющим вектором. Уравнение прямой, заданной двумя точками. Примеры.

- 11. Прямая, заданная пересечением плоскостей. Примеры.
- 12. Взаимное расположение двух прямых в пространстве.
- 13. Угол между прямыми, заданными направляющими векторами. Примеры.
- 14. Взаимное расположение прямой и плоскости. Угол между прямой и плоскостью. Примеры.
 - 15. Квадратичные формы и их аффинная классификация. Примеры.
 - 16. Аффинная классификация кривых ІІ-го порядка на плоскости. Примеры.
- 17. Ортогональные 2×2 -матрицы. Декартова классификация кривых II-го порядка на плоскости. Примеры.
 - 18. Эллипс: вывод канонического уравнения. Примеры.
 - 19. Эллипс: директориальное свойство. Примеры.
 - 20. Гипербола: вывод канонического уравнения. Примеры.
 - 21. Гипербола: директориальное свойство. Примеры.
 - 22. Парабола. вывод канонического уравнения. Примеры.
 - 23. Парабола: директориальное свойство. Примеры.

Задачи к экзамену (4 семестр)

I уровень.

Указать номер правильного ответа в каждом задании. Система координат – прямоугольная.

1. Скалярное произведение векторов $\vec{a}(1,0,1) \, u \, \vec{b}(2,3,4)$ равно:

- 1) (2, 0, 4); 2) (3, 3, 5); 3) 6.
 - **2.** Векторное произведение векторов $\vec{a}(1,0,1) \, u \, \vec{b}(2,3,4)$ имеет координаты:
- 1) (2, 0, 4); 2) (-3, -2, 3); 3) (-3, 2, 3).
 - **3.** Смешанное произведение векторов $\vec{a}(2,1,0), \vec{b}(1,3,4), \vec{c}(0,1,5)$ равно:
- 1) 17; 2) (0, 3, 0); 3) 3.
- **4.** Уравнение плоскости, проходящей через точку M_0 (1, 0, 2) перпендикулярно вектору $\vec{m}(1,2,5)$ имеет вид:
- 1) x + 2z 11 = 0; 2) x + 2y + 5z 11 = 0; 3) 2x 2z = 0.
 - **5.** Плоскости x + 2y 3z + 4 = 0 и 2x + 4y 6z + 5 = 0
- 1) пересекаются по прямой; 2) совпадают; 3) параллельны.
 - **6.** Угол между плоскостями 2x + 2y + 2z + 4 = 0 и 2x + 4y 6z + 5 = 0 равен:
- 1) 180 °; 2) 90 °; 3) 0 °.

II уровень.

7. Напишите уравнение плоскости, проходящей через прямую

$$\frac{x-3}{1} = \frac{y-2}{3} = \frac{z-1}{4}$$
, параллельно прямой $\frac{x-5}{2} = \frac{y-2}{1} = \frac{z-4}{3}$.

- **8.** Найдите угол между плоскостями: 2x + y z = 0 и x 3 y + 2z 1 = 0.
- **9.** Напишите каноническое и параметрическое уравнения прямой, проходящей через точку A(3,0,1) параллельно вектору $\vec{a}(2,5,6)$.
 - 10. Найдите уравнение прямой, заданной пересечением плоскостей:

$$\begin{cases} 2x + y - 3z + 1 = 0 \\ 4x - y + 2z + 5 = 0 \end{cases}$$

- **11**. Найдите угол между прямыми: $\frac{x+2}{1} = \frac{y-1}{2} = \frac{z}{3}$ и $\frac{x-5}{2} = \frac{y-2}{1} = \frac{z-4}{3}$.
- **12**. Найдите угол между прямой $\frac{x-2}{1} = \frac{y}{3} = \frac{z+2}{-2}$ и плоскостью.

$$3x - y - 2z - 3 = 0.$$

0.

13. Доказать, что прямая $\begin{cases} 3x - y + 2z - 1 = 0 \\ 2x + 2y - 3z + 1 = 0 \end{cases}$ принадлежит плоскости 4x - 4y + 7z - 3 = 0

14. Даны вершины тетраэдра A(0, 0, 0), B(1, -3, 0), C(1, 2, 0), D(0, 0, 5). Найдите объем и длину высоты этого тетраэдра, опущенной из вершины A.

III уровень.

- **15.** Напишите уравнение эллипса, фокусы которого лежат симметрично относительно начала координат, если а) $F_1(-4, 0)$, $F_2(4, 0)$ и b = 3 малая полуось;
- б) $F_1(-8, 0)$, $F_2(8, 0)$ и $x = \pm \frac{25}{2}$ уравнения директрис;
- в) B'(0, -3) вершина, F(5, 0) фокус.
- **16.** Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная: a) F(6, 0) фокус и a = 5 —

действительная полуось; б) 2c = 8 (фокальное расстояние), $\varepsilon = \frac{4}{3}$ (эксцентриситет); в) $y = \pm \frac{5}{2}x$ – уравнения асимптот и $F(\sqrt{29}, 0)$ – фокус.

- **17.** Составить уравнение параболы, вершина которой находится в начале координат, зная что: а) парабола расположена симметрично относительно оси OY и проходит через точку M(1; 1); б) парабола расположена симметрично относительно оси OY и проходит через точку M(4; -8).
- **18.** Даны уравнения асимптот гиперболы: $y=\pm 3x$ и уравнения директрис $x=\pm 1$. Составить каноническое уравнение гиперболы.

Напишите уравнение эллипса, фокусы которого лежат симметрично относительно начала координат, если а) $F_1(-4, 0)$, $F_2(4, 0)$ и b = 3 – малая полуось;

б)
$$F_1(-8, 0)$$
, $F_2(8, 0)$ и $x = \pm \frac{25}{2}$ – уравнения директрис;

- в) B'(0, -3) вершина, F(5, 0) фокус.
- 19. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная: а) F(6, 0) фокус и a = 5 действительная полуось; б) 2c = 8(фокальное расстояние), $\varepsilon = \frac{4}{3}$ (эксцентриситет); в) $y = \pm \frac{5}{2}x$ уравнения асимптот и $F(\sqrt{29}, 0)$ фокус.
- **20.** Составить уравнение параболы, вершина которой находится в начале координат, зная что: а) парабола расположена симметрично относительно оси OY и проходит через точку M(1; 1); б) парабола расположена симметрично относительно оси OY и проходит через точку M(4; -8).
- **21.** Даны уравнения асимптот гиперболы: $y=\pm 3x$ и уравнения директрис $x=\pm 1$. Составить каноническое уравнение гиперболы.

6.2. Критерии оценивания компетенций:

Таблица 4 Карта критериев оценивания компетенций

Код и наименование	Компонент	Оценочные	Критерии
компетенции	(знаниевый/функциональный)	материалы	оценивания
	(знаниевый/функциональный) Знает основные понятия и доказательства фактов основных разделов курса аналитической геометрии (понятие вектора, линейные операции с векторами, скалярное, векторное и смешанное произведение векторов; уравнения прямой линии и плоскости; линии второго порядка: эллипс,		оценивания Пороговый уровень: может выполнять работы под контролем преподавателя. Базовый уровень: может выполнять работы самостоятельно. Повышенный уровень: готов
	гипербола и парабола; аффинную классификацию линий второго порядка; поверхности второго порядка: эллипсоид; гиперболоид; параболоид; цилиндр; конические поверхности;		выполнять работы в условиях учебновоспитательного процесса с обучающимися.

Код и наименование	Компонент	Оценочные	Критерии
компетенции	(знаниевый/функциональный)	материалы	оценивания
	прямолинейные образующие).		
	Умеет применять	Практическ	
	теоретические знания к	ие работы	
	решению типовых	Самостояте	
	геометрических задач	льные	
	(выполнять действия с	работы.	
	векторами в координатах,	Практическ	
	находить уравнения прямых и	ий вопрос к	
	плоскостей по определяющим	зачету	
	их точкам или векторам,	(экзамену)	
	применять метод координат	(задача).	
	при решении геометрических	Контрольны	
	задач, находить параметры	е работы.	
	кривых второго порядка по их		
	каноническим и общим		
	уравнениям, приводить общее		
	уравнение кривой второго		
	порядка к каноническому		
	виду).		
ПК-4 способность	Знает области приложения	Контрольны	Пороговый уровень:
использовать	знаний по геометрии в	е вопросы	может выполнять
возможности	содержании школьного курса	Практическ	работы под
образовательной среды	математики	ие работы	контролем
для достижения	Может составить алгоритм	Контрольна	преподавателя.
личностных,	решения задачи по геометрии	я работа 3.	Базовый уровень:
метапредметных и	для использования в учебном		может выполнять
предметных результатов	процессе и пояснить решение		работы
обучения и обеспечения	типовых школьных задач		самостоятельно.
качества учебно-			Повышенный
воспитательного			уровень: готов
процесса средствами			выполнять работы в
преподаваемого учебного			условиях учебно-
предмета			воспитательного
			процесса с
			обучающимися.

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

7.1 Основная литература:

1. Жукова, Г. С. Аналитическая геометрия. Векторная и линейная алгебра : учебное пособие / Г.С. Жукова, М.Ф. Рушайло. — Москва : ИНФРА-М, 2019. — 415 с. – URL: https://znanium.com/read?id=352246 — Режим доступа: по подписка ТюмГУ.

7.2 Дополнительная литература:

- 1. Бортаковский, А. С. Линейная алгебра и аналитическая геометрия. Практикум: учебное пособие / А. С. Бортаковский, А. В. Пантелеев. 2-е изд., стер. Москва: ИНФРА-М, 2019. 352 с. URL: https://znanium.com/read?id=355516 Режим доступа: по подписка ТюмГУ.
- 2. Бортаковский, А. С. Аналитическая геометрия в примерах и задачах : учебное пособие / А. С. Бортаковский, А. В. Пантелеев. 2-е изд., стер. Москва : ИНФРА-М, 2020. 496 с. URL: https://znanium.com/read?id=355390 Режим доступа: по подписка ТюмГУ.

7.3 Интернет-ресурсы:

- 1. Единое окно доступа к информационным ресурсам. URL: http://window.edu.ru Режим доступа: свободный.
- 2. Портал образования. URL: https://portalobrazovaniya.ru Режим доступа: свободный.
- 3. Российское образование. Федеральный портал. URL: http://www.edu.ru Режим доступа: свободный.
- 4. «Математическое образование» общедоступная электронная библиотека по математике и вопросам ее преподавания. URL: https://www.mathedu.ru/ Режим доступа: свободный.

7.4. Современные профессиональные базы данных и информационные справочные системы:

- 1. Электронно-библиотечная система издательства «Лань» URL: https://e.lanbook.com/ Режим доступа: по подписке ТюмГУ.
- 2. Электронно-библиотечная система Znanium.com URL: https://znanium.com/ Режим доступа: по подписке ТюмГУ.
- 3. IPR BOOKS URL: http://www.iprbookshop.ru/ Режим доступа: по подписке ТюмГУ.
- 4. Научная электронная библиотека eLIBRARY.RU URL: https://www.elibrary.ru/defaultx.asp Режим доступа: по подписке ТюмГУ.
- 5. Межвузовская электронная библиотека (МЭБ) URL: https://icdlib.nspu.ru/ Режим доступа: по подписке ТюмГУ.
- 6. Национальная электронная библиотека (НЭБ) URL: https://rusneb.ru/ Режим доступа: по подписке ТюмГУ.
 - 7. Ивис URL: https://dlib.eastview.com/ Режим доступа: по подписке ТюмГУ.
 - 8. Библиотека ТюмГУ https://library.utmn.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

- Интернет-браузер для работы с интернет-ресурсами и информационными справочными системами;
 - Microsoft Teams интернет-приложение, платформа для электронного обучения.

Лицензионное ПО для разработки учебно-методических материалов:

Microsoft Office 2003, Microsoft Office 2007, Microsoft Office 2010, Windows,
 Dr. Web, Autodesk AutoCAD 2018.

9. Технические средства и материально-техническое обеспечение дисциплины (модуля)

Мультимедийная учебная аудитория семинарского типа № 412 на 28 посадочных мест для проведения лекционных и практических занятий оснащена следующими техническими средствами обучения и оборудованием: учебная мебель, доска аудиторная, мультимедийное проекционное и акустическое оборудование, персональный компьютер

ПК (DELL VOSTRO 3900: Intel Core i5-4460 3,2 ГГц; DDR3 4 ГБ; SSD 128 ГБ; DELL E2214HB: 1920х1080; 21,5 дюйм; MS Windows 10; MS Office 2010), проектор (Epson EB-980W: 1280х800; 3800 лм), экран (16:9; 190х330 см)

На ПК установлено следующее программное обеспечение: Офисное ПО: операционная система MS Windows, офисный пакет MS Office, платформа MS Teams, офисный пакет LibreOffice, антивирусное ПО Dr. Web.

Обеспечено проводное подключение ПК к локальной сети и сети Интернет.

Мультимедийная учебная аудитория семинарского типа № 311 на 24 рабочих места с компьютерным классом на 15 рабочих мест для проведения индивидуальных и групповых консультаций, для самостоятельной работы оснащена следующими техническими средствами обучения и оборудованием:

15+1 ПК (Dell 3060-7601: Intel Core i5 8500Т 2,1 ГГц; DDR4 8 ГБ; SSD 256 ГБ; Dell SE2216H: 1920х1080; 21,5 дюйма; MS Windows 10; MS Office 2010), **проектор** (Epson EB-980W: 1280х800; 3800 лм), **экран** (16:10)

На ПК установлено следующее программное обеспечение:

— Офисное ПО: операционная система MS Windows, офисный пакет MS Office, платформа MS Teams, офисный пакет LibreOffice, антивирусное ПО Dr. Web. Обеспечено проводное подключение ПК к локальной сети и сети Интернет.