Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Романчук Иван Сергеевич МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Должность: Ректор

РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 23.11 2022 17:35:52
Уникальный программный млюч.

Дата подписания: 23.11 2022 17:35:52
Уникальный программный млюч.

e68634da050325a9234284dd96b4f0f8b288e1УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Тобольский педагогический институт им. Д.И. Менделеева (филиал) Тюменского государственного университета

> **УТВЕРЖДЕНО** Заместителем директора филиала Шитиковым П.М. **РАЗРАБОТЧИК** Ахундова И. Т.

ОП.15 МИКРОПРОЦЕССОРНАЯ ТЕХНИКА В МЕХАТРОНИКЕ И РОБОТОТЕХНИКЕ

рабочая программа дисциплины для обучающихся по программе подготовки специалистов среднего звена 15.02.10 Мехатроника и мобильная робототехника (по отраслям) Форма обучения – очная

Ахундова И.Т. ОП. 15. Микропроцессорная техника в мехатронике и робототехнике Рабочая программа дисциплины для обучающихся по программе подготовки специалистов среднего звена 15.02.10 Мехатроника и мобильная робототехника (по отраслям). Форма обучения — очная. Тобольск, 2022.

Рабочая программа дисциплины разработана на основе ФГОС СПО по специальности 15.02.10 Мехатроника и мобильная робототехника (по отраслям), утвержденного приказом Министерства образования и науки Российской Федерации 09 декабря 2016 года, № 1550, на основе примерной основной образовательной программы, регистрационный номер в реестре 170828 от 17 апреля 2017 года.

Рабочая программа дисциплины опубликована на сайте Тобольского пединститута им. Д.И. Менделеева (филиал) ТюмГУ «Микропроцессорная техника в мехатронике и робототехнике». [электронный ресурс] / Режим доступа: https://tobolsk.utmn.ru/sveden/education/#

[©] Тобольский педагогический институт им. Д.И. Менделеева (филиал) Тюменского государственного университета, 2022

[©] Ахундова И.Т., 2022

Содержание

1.	Паспорт рабочей программы дисциплины	3
2.	Структура и содержание дисциплины	4
3.	Условия реализации дисциплины	8
4.	Контроль и оценка результатов освоения дисциплины	9

1. Паспорт рабочей программы дисциплины

1.1. Область применения программы

Рабочая программа дисциплины — является частью программы подготовки специалистов среднего звена в соответствии с ФГОС СПО по специальности 15.02.10 Мехатроника и мобильная робототехника (по отраслям).

1.2. Место дисциплины в структуре программы подготовки специалистов среднего звена:

Дисциплина «Микропроцессорная техника в мехатронике и робототехнике», входит в общепрофессиональный цикл образовательной программы.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен знать:

- архитектуру и принципы построения микропроцессорных систем;
- современные микропроцессоры и микроконтроллеры, применяющиеся при проектировании промышленной и научной автоматики, методы их конструирования;
- особенности и области применения типовых микропроцессорных систем на основе микроконтроллеров Microchip;
- виды, интерфейсы и способы применения датчиков и исполнительных устройств в микропроцессорных системах;
- методы и способы разработки программного обеспечения для встроенных систем.

В результате освоения дисциплины обучающийся должен уметь:

- проводить сравнительный анализ микропроцессоров и микроконтроллеров, выбирать наиболее подходящий для решения поставленных задач;
- обосновывать технические требования к микропроцессорным системам по общему техническому заданию;
- проектировать управляющие системы с применением микропроцессорной техники;
- разрабатывать программы для устройств на основе программируемой микроэлектроники;
- применять стандартные программы САПР для проектирования микропроцессорных систем.

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

- ПК 1.2. Осуществлять настройку и конфигурирование программируемых логических контроллеров и микропроцессорных систем в соответствие с принципиальными схемами подключения.
- ПК 1.3. Разрабатывать управляющие программы мехатронных систем в соответствии с техническим заданием.
- ПК 1.4. Выполнять работы по наладке компонентов и модулей мехатронных систем в соответствии с технической документацией.

1.4. Количество часов на освоение дисциплины:

Семестр 8;

Максимальной учебной нагрузки обучающегося 60 часов, в том числе: обязательной аудиторной нагрузки обучающегося 60 часов.

2. Структура и содержание дисциплины

2.1. Объем дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	60
Обязательная аудиторная учебная нагрузка (всего)	60
в том числе:	
лабораторные занятия	40
практические занятия	0
Самостоятельная работа обучающегося (всего)	0
Форма промежуточной аттестации по дисциплине – зачет	

2.2. Тематический план и содержание дисциплины

Наименование разделов и тем	Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся, курсовая работа (проект) (если предусмотрены)	Объем часов	Уровень освоения
1	2	3	4
Тема 1. Введение	Содержание учебного материала:		
	История развития микропроцессорных систем.	2	1
	Обобщённая структура микропроцессора.	2	1
	Основные параметры микропроцессоров.		
	Лабораторное занятия:		
	Техника безопасности.	2	
	Составление, чтение технического задания.	2	2
	Подготовка и работа с технической документацией.		
Тема 2.	Содержание учебного материала		
Программно-	Обзор сред разработки и отладки микропроцессорных систем: Proteus ISIS, ORCAD,		
аппаратные	Microchip MPLab, Micro-Cap, Logisim, Pic Simulator Studio; компиляторов MPAsm,		
комплексы Proton; языков программирования: Assembler, языков высокого уровня (С-образные,		4	1
проектирования	Basic-образные), систем макрокоманд.		
микропроцессорны	Изучение интерфейса и основы работы в среде разработки Microchip MPLab, и		
х систем	симуляторе Pic Simulator Studio.		
управления	Лабораторные занятия:		
	Инструменты разработчика микропроцессорных систем.		
	Знакомство со средой разработки Micro-Cap, Logisim, Microchip MPLab,	6	2, 3
	интегрированным компилятором MPAsm, симулятором Pic Simulator Studio, их	O	2, 3
	применение для работы с микроконтроллерами серии PIC16F877, Atmega AVR.		
	Изучение интерфейса и основы работы в среде разработки Arduino IDE.		
Тема 3.	Содержание учебного материала		
Архитектура	Общие понятия архитектуры микропроцессоров.		
микропроцессоров	Классификация микропроцессоров по внутренней структуре и функциональным		
	возможностям.	4	1
	Обработка команд программы микропроцессором.	7	1
	Машинные циклы. Методы адресации.		
	Интерфейс микропроцессора и периферийных устройств.		
	Схемотехника интерфейса, соответствие логических значений и физических величин.		
	Лабораторные занятия:	6	2, 3

	Ввод и вывод данных в микроконтроллерах.		
	Знакомство с командами пересылки и адресации регистров микроконтроллера		
	РІС16F877, их применение для генерации и анализа внешних сигналов.		
	Знакомство с командами пересылки и адресации регистров микроконтроллера Atmega		
	AVR процессора ATmega328.		
Тема 4.	Содержание учебного материала		
Микроконтроллеры	Назначение и классификация микроконтроллеров.		
. Особенности	Архитектурные особенности микроконтроллеров на примере PIC16F877 и Atmega AVR.	2	1
программирования	Применение микроконтроллеров для разработки систем управления и автоматизации в		
и применения	мехатронике и робототехнике.		
	Лабораторные занятия:		
	Разработка алгоритмов автоматизации и принятия решений для микроконтроллеров.		
	Косвенная адресация, условные и безусловные переходы, работа с программным	(2
	счетчиком.	6	2
	Методы эффективного использования блоков памяти микроконтроллера для анализа его		
	состояния и принятия решений.		
Тема 5.	Содержание учебного материала		
Программирование	Архитектура 8-разрядных микропроцессоров на примере і8086. Алгоритм работы.		
8-разрядных	Функции регистров, арифметико-логического устройства.	2	1
микропроцессоров	Регистр команд и устройство управления процессором.	2	1
	Управление шинами адреса и данных.		
	Схемотехника 8-разрядных процессоров.		
	Лабораторные занятия:		
	Разработка математического функционала для микроконтроллера PIC16F877, Atmega		
	AVR.		
	Команды работы с арифметико-логическим устройством.	6	2, 3
	Анализ результата вычисления АЛУ по состоянию регистра Status.		
	Разработка подпрограмм для программной эмуляции нереализованных арифметических		
	команд.		
Тема 6.	Содержание учебного материала	4	1, 2
Особенности	Особенности архитектуры 16- и 32-разрядных микропроцессоров: система команд;		
программирования	CISC и RISC процессоры; способы адресации.		
16- и 32-разрядных	Способы повышения производительности микропроцессоров: конвейерная обработка		
микропроцессоров	команд; система управления шиной; кэш-память; поддержка виртуальной памяти,		
	суперскалярность.		
	Структура и основные параметры 32-разрядных микропроцессоров фирмы Intel.		

	Лабораторные занятия:		
	Обработка 16- и 32-битных данных в 8-разрядных микроконтроллерах PIC16F877, Аtmega AVR. Особенности построения алгоритмов для ввода, обработки и вывода данных разрядностью 16 и 32 бита с использованием системы команд и архитектуры 8-разрядных микроконтроллеров. Логическое объединение регистров. Последовательный ввод и вывод данных.	6	2, 3
Тема 7. Встраиваемые микропроцессорны е системы, базовые схемы и особенности их применения	Содержание учебного материала: Одноплатные контроллеры и компьютеры. Специализированная периферия микроконтроллеров. Работа с аналоговыми сигналами. Промышленные контроллеры. Модули промышленных интерфейсов в микроконтроллерах. Базовые схемы измерительных и исполнительных устройств, особенности программирования и применения.	2	1
	Лабораторные занятия: Применение встроенной периферии в микроконтроллерах PIC16F877, Atmega AVR для работы с аналоговыми сигналами. Использование модуля аналого-цифрового преобразования для измерения аналоговых величин. Использование модуля широтно-импульсной модуляции для формирования аналоговых сигналов. Применение встроенной периферии в микроконтроллерах PIC16F877, Atmega AVR для приема и передачи данных по интерфейсу RS-232. Использование модуля USART микроконтроллера для передачи и приема данных по протоколу RS-232. Обмен данными с ПК. Контрольная работа.	8	2
Всего		60	

Примечание - для характеристики уровня освоения учебного материала используются следующие обозначения: 1. - Ознакомительный (узнавание ранее изученных объектов, свойств);

- 2. Репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3. Продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. Условия реализации дисциплины

3.1. Требования к минимальному материально-техническому обеспечению

Реализация дисциплины требует наличия:

- Лаборатория мобильной робототехники оснащен следующими техническими средствами обучения и оборудованием: учебная мебель, доска аудиторная, мультимедийное проекционное и акустическое оборудование, персональные компьютеры, комплект LEGO Education «WeDo 2.0». На ПК установлено следующее программное обеспечение: Офисное ПО: операционная система MS Windows, офисный пакет MS Office, платформа MS Teams, офисный пакет LibreOffice, антивирусное ПО Dr. Web. Обеспечено проводное подключение ПК к локальной сети и сети Интернет.
- Лаборатория программируемых логических контроллеров оснащена следующими техническими средствами обучения и оборудованием: учебная мебель, доска аудиторная, мультимедийное проекционное и акустическое оборудование, персональные компьютеры, набор инструмента (отвертки, шестигранные ключи, мультиметр, резак для пневматических шлангов), лабораторный набор для изучения принципов работы элементов цифровых устройств («И», «ИЛИ», «ИЛИ-НЕ», «И-НЕ», «Исключающее ИЛИ», триггеры, регистры, сумматоры, счетчики, преобразователи кодов, АЛУ, мини ЭВМ): блоки питания ОГПИ БП-17 17 шт.; стенды универсальные ОАВТ; набор микросхем; набор накладных карт; наборы элементов электрических цепей (резисторы, потенциометры, терморезисторы, фоторезисторы, варисторы, конденсаторы, катушки, диоды, стабилитроны. На ПК установлено следующее программное обеспечение: Офисное ПО: операционная система МS Windows, офисный пакет MS Office, платформа МS Театв, офисный пакет LibreOffice, антивирусное ПО Dr. Web. Обеспечено проводное подключение ПК к локальной сети и сети Интернет.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий: основной и дополнительной литературы, интернет - ресурсов.

Основная литература:

1.Микропроцессорная техника: учебно-методическое пособие / А. С. Голубков, В. М. Филиппов, И. Е. Чертков, С. О. Подгорная. — Омск : ОмГУПС, 2020 — Часть 1 — 2020. — 31 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/165638 (дата обращения: 04.09.2022). — Режим доступа: для авториз.

Дополнительная литература:

- 2. Гуров, В. В. Микропроцессорные системы: учебник / В.В. Гуров. Москва: ИНФРА-М, 2021. 336 с. + Доп. материалы [Электронный ресурс]. (Среднее профессиональное образование). ISBN 978-5-16-015323-0. Текст: электронный. URL: https://znanium.com/catalog/product/1514901 (дата обращения: 05.09.2022). Режим доступа: по подписке.
- 3. Богаченков, А. Н. Цифровые устройства и микропроцессоры : методические указания / А. Н. Богаченков. Москва : РТУ МИРЭА, 2022. 77 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/240125 (дата обращения: 05.09.2022). Режим доступа: для авториз. пользователей.

Интернет-ресурсы:

- 1. Знаниум https://new.znanium.com/
- 2. Лань https://e.lanbook.com/
- 3. IPR Books http://www.iprbookshop.ru/
- 4. Elibrary https://www.elibrary.ru/
- 5. Национальная электронная библиотека (НЭБ) https://rusneb.ru/

- 6. Межвузовская электронная библиотека (МЭБ) https://icdlib.nspu.ru/
- 7. "ИВИС" (БД периодических изданий) https://dlib.eastview.com/browse
- 8. Электронная библиотека Тюмгу https://library.utmn.ru/

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине: Платформа для электронного обучения MicrosoftTeams.

4. Контроль и оценка результатов освоения дисциплины

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

	Результаты обучения	Формы и методы контроля и
	(освоенные умения, усвоенные знания)	оценки результатов обучения
Зна	ания:	Устный опрос.
_	архитектуру и принципы построения	Тестирование.
	микропроцессорных систем;	Сообщения.
-	современные микропроцессоры и	Контрольная работа.
	микроконтроллеры, применяющиеся при	Индивидуальная работа.
	проектировании промышленной и научной	
	автоматики, методы их конструирования;	
-	особенности и области применения типовых	
	микропроцессорных систем на основе	
	микроконтроллеров Microchip;	
-	виды, интерфейсы и способы применения	
	датчиков и исполнительных устройств в	
	микропроцессорных системах;	
-	методы и способы разработки программного	
	обеспечения для встроенных систем.	
Ум	ения:	
-	проводить сравнительный анализ	
	микропроцессоров и микроконтроллеров,	
	выбирать наиболее подходящий для решения	
	поставленных задач;	
-	обосновывать технические требования к	
	микропроцессорным системам по общему	
	техническому заданию;	
-	проектировать управляющие системы с	
	применением микропроцессорной техники;	
-		
-		
	проектирования микропроцессорных систем.	
_	разрабатывать программы для устройств на основе программируемой микроэлектроники; применять стандартные программы САПР для проектирования микропроцессорных систем.	