МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета

УТВЕРЖДАЮ
Директор

ОСЕДЕНИЯ ТОСОВОРНОТО ОБРАЗОВНОТО ОБРАЗОВНОТО

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

44.03.05 Педагогическое образование (с двумя профилями подготовки): Профили математика; информатика Форма обучения: очная

1. Паспорт оценочных материалов по дисциплине

No	Темы дисциплины (модуля)/	Код и содержание	Наименование оценочного
Π/Π	разделы в ходе текущего	контролируемой	средства (краткое описание с
	контроля, вид промежуточной	компетенции (или	указанием количества
	аттестации (зачет, экзамен, с	ее части)	вариантов, заданий и т.п.)
	указанием семестра)		
		9 семестр	
1	Введение в теоретическую		Тестирование по темам курса
	информатику	ОК-3,	(тестовые задания для раздела 1)
2	Основы теории кодирования	ПК-2	Практические задания
			лабораторных работ
			Тестирование по темам курса
			(тестовые задания для раздела 1)
3	Системы счисления и		Практические задания
	представление информации в		лабораторных работ
	ЭВМ		Тестирование по темам курса
			(тестовые задания для раздела 2)
4	Основы кибернетики,		Практические задания
	моделирования и теории		лабораторных работ
	искусственного интеллекта		Тестирование по темам курса
			(тестовые задания для раздела 2)
5	Основы теории алгоритмизации		Практические задания
			лабораторных работ
			Тестирование по темам курса
			(тестовые задания для раздела 3)
6	Алгоритмы оптимизации на		Практические задания
	сетях и графах.		лабораторных работ
			Тестирование по темам курса
			(тестовые задания для раздела 3)
	Раздел 1-6		Вопросы для подготовки к
			экзамену (1-35).
			Контрольная работа

2. Виды и характеристика оценочных средств

С целью текущего контроля знаний проводится проверка выполнения практических заданий лабораторных работ, результатов контрольной работы, тематического тестирования.

2.1. Практические задания

Практические задания в рамках лабораторных занятий используются для оценки умений по темам дисциплины. Включают в себе выполнение практических расчетных заданий или выполнение проектов творческого характера с построением алгоритма решения и его реализации на языке программирования.

Балл	Критерий оценивания заданий					
3	Свободно применяет полученные знания при выполнении практических заданий;					
	Выполнил работу в полном объеме с соблюдением необходимой последовательности					
	действий;					
	В письменном отчете по работе правильно и аккуратно выполнены все записи;					
	При ответах на контрольные вопросы правильно понимает их сущность, дает точное					
	определение и истолкование основных понятий, использует специальную					
	терминологию дисциплины, не затрудняется при ответах на видоизмененные вопросы,					

	сопровождает ответ примерами.
1-2	Практическая работа выполнена не полностью, но объем выполненной части позволяет
	получить правильные результаты и выводы;
	В ходе выполнения работы студент продемонстрировал слабые практические навыки,
	были допущены ошибки;
	Студент умеет применять полученные знания при решении простых задач по готовому
	алгоритму;
	В письменном отчете по работе допущены ошибки;
	При ответах на контрольные вопросы правильно понимает их сущность, но в ответе
	имеются отдельные пробелы и при самостоятельном воспроизведении материала
	требует дополнительных и уточняющих вопросов преподавателя.
0	Практическая работа выполнена не полностью и объем выполненной работы не
	позволяет сделать правильных выводов, у студента имеются лишь отдельные
	представления об изученном материале, большая часть материала не усвоена;
	В письменном отчете по работе допущены грубые ошибки, либо он вообще
	отсутствует;
	На контрольные вопросы студент не может дать ответов, так как не овладел
	основными знаниями и умениями в соответствии с требованиями программы.

2.2. Контрольная работа

Контрольная работа проводится после изучения всех тем курса. Отчет о выполнении заданий оценивается по 5-ти балльной системе. Критерии оценки ответа (табл.) доводятся до сведения обучающихся в начале занятий.

Балл	Критерий оценивания				
"отлично"	Выполнил работу самостоятельно и без ошибок; допустил не более одного				
	недочета; демонстрирует понимание способов и видов учебной деятельности по				
	применению или созданию алгоритма; владеет терминологией и может				
	прокомментировать этапы своей деятельности и полученный результат; может				
	предложить другой способ деятельности или алгоритм выполнения задания.				
"хорошо"	Выполнил работу самостоятельно и без ошибок; допустил не более двух (для				
	простых задач) и трех (для сложных задач) недочетов; демонстрирует				
	понимание способов и видов учебной деятельности по созданию или				
	применению алгоритма; может прокомментировать этапы своей деятельности и				
	полученный результат (например, дает комментарии о				
	выполненных действиях при составлении алгоритма, применении алгоритма				
	кодирования; затрудняется предложить другой способ деятельности или				
	алгоритм выполнения задания.				
"удовлетворительно"	Если студент правильно выполнил более 50% всех заданий и при этом:				
	демонстрирует общее понимание способов и видов учебной деятельности по				
	созданию алгоритма; может прокомментировать некоторые этапы своей				
	деятельности и полученный результат.				
	Или при условии выполнения всей работы студент допустил:				
	для простых задач – одну грубую ошибку или более четырех недочетов;				
	для сложных задач – две грубые ошибки или более восьми недочетов.				
	Сложным считается задание, которое естественным образом разбивается на				
	несколько частей при его выполнении.				
"неудовлетворительно"	Допустил число ошибок и недочетов, превышающее норму, при которой может				
	быть выставлена оценка «удовлетворительно»; правильно выполнил не более				
	10% всех заданий. Или не приступил к выполнению работы.				

2.3. Тестирование

Процедура тестирования по темам курса используется для оценки готовности использовать систематизированные теоретические и практические знания в области теоретической информатики.

75-100% правильных ответов - зачтено, менее 75% правильных ответов - незачтено.

2.4. Экзамен в форме собеседования по вопросам

Критерии выставления оценки

Оценка «отлично»:

- полно раскрыл содержание материала в объеме, предусмотренном программой;
- изложил материал грамотным языком в определенной логической последовательности, точно используя специализированную терминологию и символику;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов.
- при решении практической задачи выполнены все этапы алгоритма, верно выполнены промежуточные вычисления и обоснованно получен верный ответ.

Оценка «хорошо»:

- в изложении допущены небольшие пробелы, не исказившие логического и информационного содержания ответа;
- нет определенной логической последовательности, неточно используется специализированная терминология и символика;
- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию или вопросу преподавателя.
- при решении практической задачи выполнены все этапы алгоритма, в процессе выполнения промежуточных вычислений допущена арифметическая ошибка и обоснованно получен ответ с учетом допущенной ошибки.

Оценка «удовлетворительно»:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса, имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, блок-схем и листингах, исправленные после нескольких наводящих вопросов преподавателя;
- студент не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме,
- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков;
- при решении практической задачи выполнены все этапы алгоритма, в процессе выполнения промежуточных вычислений допущены арифметические ошибки и получен ответ с учетом допущенной ошибки или ответ получен не обоснованно.

Оценка «неудовлетворительно»:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание студентом большей или наиболее важной части учебного материала,
- допущены ошибки в определении понятий, при использовании терминологии, в блоксхемах и листингах программ, которые не исправлены после нескольких наводящих вопросов преподавателя.

- допускает грубые ошибки в решении типовых практических	решении задач	И	не	умеет	применять	базовые	алгоритмы	при

3. Оценочные средства

3.1. Практические задания Задания для первого раздела

		первого	риодин							
No॒	Условие задания									
	Определить количество информации, приходящейся на символ системы (энтропию системы), состояние которой описывается случайной величиной X с рядом распределения									
	X	XI	X2	Х3	X4	X5				
	Pi	0.02	0,02	0,02	0,47	0,47				
		•				целится на идеопамяти	две страницы, разрешающая способность и.			
	Дан код Хемминга (представить в двоичной форме с 6 битами): А - 0; М - 15; Л – 19; К–28; О - 38; Р - 41; В - 53; Ь - 58. Расшифруйте сообщение: 011111100010101011111000101011111001001									
4	Разархивировать сообщение, сжатое методом Лемнела-Зива 0100101(4,3,0)(8,7)(10,8,1)									
5.	Сжать сообщение методом Лемпела-Зива: 111110000111100111110001111									
	Пусть алфавит А содержит 6 букв, вероятности которых равны 0,4; 0,2; 0,2; 0.1; 0,05 и 0,05. Произведите кодирование кодом Шеннона-Фано и проверьте код на оптимальность.									
	0.28; 0.1	Дана совокупность символов xl, x2, x3, x4 со следующей статистикой соответственно: 0.28; 0.14; 0,48; 0,10. Закодируйте символы по методу Хаффмана и проверьте код на оптимальность								

Задания для второго раздела

No	Условие задания
1.	Переведите в двоичную систему число 149,3810.
2.	Перевести в десятичную систему счисления следующее число 53617
3.	Перевести в 16-ую и 8-ую систему счисления 2-ое число: 10111001,101100111
4.	Найти произведение следующих чисел: 1011101_2 и 11011_2
5.	Найдите сумму и разность пары чисел $41,4_{16}$ и $3C,D_{16}$
6.	Перевести десятичное число в двоично-десятичную систему: 567,75
7.	Записать десятичное число, если известен его дополнительный код 1111100110101110
8.	Выполнить сложение пары чисел в дополнительных кодах: 354 и - 233
9.	Записать код действительного числа, интерпретируя его как величину типа Single: -27,375

Задания для третьего раздела

No	Условие задания					
1.	Составить блок-схему решения задачи: Записать подряд в массив A(N) элементы заданного					
	массива B(2N), стоящие на чётных местах, а элементы, стоящие на нечётных местах,					
	записать в массив $C(N)$.					
2.	Найдите остовное древо графа с ребрами АБ=6, АВ=11, АМ=4, БГ=12, БК=10, БМ=8					
	ВМ=5, ВД=9, ГМ=7, ГА=13, ДМ=4. КМ=7 алгоритмом Прима.					
3.	Найдите остовное древо графа с ребрами АБ=6, АВ=11, АМ=4, БГ=12, БК=10, БМ=8					
	ВМ=5, ВД=9, ГМ=7, ГА=13, ДМ=4. КМ=7 алгоритмом Краскала.					
4.	Известны длины ребер графа: AБ=7, AД=12, AM=5. БГ=11, БК=9, БМ=7, BM=6, ВД=10,					
	ГМ=6. ГК=12, ДМ=5, КМ=6, А К=6. Найти кратчайшее расстояние от вершины Г до					
	всех остальных и восстановить путь от Г до всех вершин графа					
5.	Определите кратчайшее расстояние между входом и выходом сети П методом Дейкстры,					

	если А - вход, М - выход (варианты графов сети прилагаются)
6.	Определите максимальный поток через сеть П методом образною планирования, если А
	- вход, М - выход (варианты графов сети прилагаются)

3.2. Тестовые задания по темам курса

Раздел 1.

- 1. Информатика это наука
 - 1) об информации;
 - 2) об информации и её свойствах;
 - 3) о способах получения, преобразования, хранения, передачи и использования информации;
 - 4) о внедрении компьютерной техники и информационных технологий в различные сферы производства, общественной и личной жизни людей.
- 2. При кодировании текстовой информации в кодах ASCII двоичный код каждого символа в памяти ПК занимает
 - 1) 1 байт
 - 2) 1 бит
 - 3) 8 байт
 - 4) 2 бита
- 3. Перевод записи информации из одного вида в другой называется
 - 1) кодированием
 - 2) декодированием
 - 3) расшифровкой
 - 4) обратимым кодированием
- 4. Сжатие графического изображение с потерей информации характерно для метода
 - 1) Лемпел-Зива
 - 2) Хэмминга
 - 3) MPEG
 - 4) JPEG
- 5. Для восстановления информации используется код
 - 1) Хэмминга
 - 2) нормализованный
 - 3) Хаффмана
 - 4) двоично-десятичный
- 6. Код, содержащий псевдографику обозначается...
 - 1) ASCII
 - 2) ANSI
 - 3) Unicod
 - 4) rueType
- 7. Код, стандартный для операционной системы Windows называется...
 - 1) ASCII
 - 2) ANSI
 - 3) Unicod
 - 4) TrueType
- 8. Код, содержащий кодовую таблицу более тысячи знаков называют...
 - 1) ASCII
 - 2) ANSI
 - 3) Unicod
 - 4) TrueType
- 9. Термин, который обозначает не кодовую таблицу, а шрифт это ...
 - 1) ASCII
 - 2) ANSI
 - 3) Unicod

- 4) TrueType
- 10. Определяет объем информации при равновероятных вариантах
 - 1) Формула Шеннона
 - 2) Формула Котельникова
 - 3) Формула Хартли
 - 4) Формула Горнера
- 11. Использует вероятности событий при вычислении объема информации
 - 1) Формула Шеннона
 - 2) Формула Котельникова
 - 3) Формула Хартли
 - 4) Формула Горнера

Какая из теорем определяет спектр дискретной информации?

- 1) Теорема Шеннона
- 2) Теорема Котельникова
- 3) Теорема Радо-Эдомса
- 4) Теорема Форда-Фалкерсона

Какая из величин наибольшая?

- 1) 1 терабайт
- 2) 1 гигабайт
- 3) 1 мегабайт
- 4) 1100 килобайт

В каком методе сжатия информации используются триплеты (а, в, с)?

- 1) метод Лепел-Зива
- 2) метод Хэмминга
- 3) метод Хафмена
- 4) метод JPEG

В каком методе информация не сжимается а даже увеличивает свой объем?

- 1) метод Лепел-Зива
- 2) метод Хэмминга
- 3) метод Хафмена
- 4) метод JPEG

Какая из систем служит для преобразования кода программ?

- 1) Редактор
- 2) Драйвер
- 3) Утилита
- 4) Транслятор

Какая из систем служит для набора текста программ?

- 1) Транслятор
- 2) Редактор
- 3) Драйвер
- 4) Утилита

Какая из систем служит для связи с внешним устройством?

- 1) Утилита
- 2) Драйвер
- 3) Транслятор
- 4) Редактор

К какому классу языков относится язык Лисп?

- 1) Процедурные
- 2) Реляционные
- 3) Функциональные
- 4) Объектно-Ориентированные
- 5) Машинно-ориентированные

К какому классу языков относится язык С++?

1) Процедурные

- 2) Реляционные
- 3) Функциональные
- 4) Объектно-Ориентированные
- 5) машинно-ориентированные

К какому классу языков относится язык Ассемблера?

- 1) Процедурные
- 2) Реляционные
- 3) Функциональные
- 4) Объектно-Ориентированные
- 5) машинно-ориентированные

Какой из терминов относится к методу моделирования звука?

- 1) JPEG
- 2) волновая таблица
- 3) MPEG
- 4) фрактал

В каком методе сжатия определяется частота появления информации?

- 1) метод Лепел-Зива
- 2) метод Хэмминга
- 3) метод Хафмена
- 4) метод JPEG

В каком методе используют неравномерный код?

- 1) метод Лепел-Зива
- 2) метод Хэмминга
- 3) метод Хафмена
- 4) метод JPEG

Какой из терминов относится к методу контроля ошибок?

- 1) бит четности
- 2) циклическое ребро
- 3) пиксел
- 4) ключ

Какой из терминов относится к криптографии?

- 1) бит четности
- 2) циклическое ребро
- 3) пиксел
- 4) ключ

Какая из величин наибольшая?

- 1) 10 бит
- 2) 1001 байт
- 3) 1 байт
- 4) 1 килобайт

Какой из терминов относится к методу запоминания «разности» изображений?

- 1) JPEG
- 2) волновая таблица
- 3) MPEG
- 4) фрактал

Какая из величин наименьшая?

- 1) 1 терабайт
- 2) 1 гигабайт
- 3) 1 мегабайт
- 4) 1100 килобайт

Какое из правил относится к криптографии?

- 1) правило Киргофа
- 2) правило избыточности

- 3) правило тетрад
- 4) правило Цезаря

Раздел 2. (Указать один правильный ответ)

- 1. Система счисления это
- 1) способ представления чисел и соответствующие ему правила действия над числами
- 2) способ записи чисел
- 3) способ перестановки чисел
- 4) принятый способ записи чисел и сопоставления этим записям реальных значений чисел
- 2. Вычислите в двоичной системе счисления 11+101=
- 1) 111
- 2) 1000
- 3) 1111
- 4) 1001
- 3. В позиционных системах счисления
- 1) величина, обозначаемая цифрой в записи числа, зависит от её позиции
- 2) величина, обозначаемая цифрой в записи числа, не зависит от её позиции
- 3) положение цифры в записи числа определяет целую часть числа
- 4) величина числа определяется основанием системы
- 4. Для получения обратного кода исходным является
- 1) прямой код
- 2) дополнительный код
- 3) двоично-десятичный код
- 4) нормализованный код
- 5. Укажите неверные утверждения
- 1) Римская система счисления не является позиционной
- 2) Метод деления служит для преобразования дробной части
- 3) Метод умножения служит для преобразования дробной части
- 4) Правило триад служит для 8-й системы счисления
- 5) Правило триад служит для 16-й системы счисления

Укажите неверное утверждение.

- 1) Римская система счисления не является позиционной.
- 2) Метод умножения служит для преобразования дробной части.
- 3) Метод деления служит для преобразования дробной части.
- 4) Правило триад служит для 8-й системы счисления.

Укажите неверное утверждение.

- 1) Римская система счисления является не позиционной.
- 2) Метод умножения служит для преобразования целой части.
- 3) Метод деления служит для преобразования целой части.
- 4) Правило тетрад служит для 16-й системы счисления.

Укажите неверное утверждение.

- 1) Римская система счисления не является позиционной.
- 2) Метод умножения служит для преобразования дробной части.
- 3) Метод деления служит для преобразования целой части.
- 4) Правило тетрад служит для 8-й системы счисления.

В каком коде определяется мантисса?

- 1) Прямой код
- 2) Двоично-десятичный код
- 3) Дополнительный код
- 4) Нормальный код

В каком коде выделяется для каждой цифры тетрада?

- 1) Прямой код
- 2) Двоично-десятичный код
- 3) Дополнительный код
- 4) Нормальный код

В каком коде необходимо прибавить 1 в окончательный результат?

- 1) Прямой код
- 2) Двоично-десятичный код
- 3) Дополнительный код
- 4) Нормальный код

Какой из кодов является исходным для получения обратного кода?

- 1) Прямой код
- 2) Двоично-десятичный код
- 3) Дополнительный код
- 4) Нормальный код

Укажите неверное утверждение.

- 1) F это цифра 16 в 16-й системе счисления
- 2) Правило триад действует в 8-й системе счисления
- 3) Правило тетрад действует в 16-й системе счисления
- 4) Цифра 8 отсутствует в 8-й системе счисления

Укажите неверное утверждение.

- 1) F это цифра 15 в 16-й системе счисления
- 2) Правило тетрад действует в 16-й системе счисления
- 3) Правило триад действует в 16-й системе счисления
- 4) Цифра 7 отсутствует в 5-й системе счисления

Укажите неверное утверждение.

- 1) F это цифра в 16-й системе счисления
- 2) Правило тетрад действует в 16-й системе счисления
- 3) Правило триад действует в 8-й системе счисления
- 4) Цифра 8 отсутствует в 9-й системе счисления

Какой из терминов относится к методу преобразования чисел?

- 1) матроид
- 2) энтропия
- 3) триада
- 4) пропускная способность

Какое из выражений справедливо в 3-й системе счисления?

- 1) 6*2=15
- 2) 2*2=11
- 3)9+8=11
- 4) 4*4=31

Какое из правил преобразует дробную часть числа из 10-й системы в 7-ю?

- 1) правило деления
- 2) правило умножения
- 3) правило тетрад
- 4) правило вычитания степеней

Какое из выражений справедливо в 7-й системе счисления?

- 1) 6*2=15
- 2) 2*2=11
- 3)9+8=11
- 4) 4*4=31

Какое из выражений справедливо в 5-й системе счисления?

1) 6*2=15

2) 2*2=11
3) 9+8=11
4) 4*4=31
Какое из выражений справедливо в 16-й системе счисления?
1) 6*2=15
2) 2*2=11
3) 9+8=11
4) 4*4=31
Имитационное моделирование это
1) моделирование с использованием случайных процессов и явлений
2) моделирование специальных экспериментов для создания моделей, когда трудно или
невозможно описать связь между входными и выходными параметрами
3) моделирование систем, имеющих случайные параметры или процессы4) анализ физических, экономических, биологических, химических закономерностей которые влияют
на поведение объекта
5) моделирование с помощью аналоговых и гибридных систем
Алгоритм, разработанный для теории доказательств
1) Генетический алгоритм
2) Экстра алгоритм
3) Адаптивный алгоритм
4) Нормальный алгоритм
Какое из правил преобразует целую часть числа из 10-й системы в 7-ю?
1) правило деления
2) правило умножения
3) правило тетрад
4) правило вычитания степеней
Какое из правил используется для преобразования из 16-й системы в 2-ю?
1) правило деления
2) правило умножения
3) правило тетрад
4) правило вычитания степеней
Какое из правил используют только для преобразования из 10-й системы в 2-ю?
1) правило деления
2) правило умножения
3) правило тетрад
4) правило вычитания степеней
Какое из выражений не справедливо в 16-й системе счисления?
1) 6+2=8
2) 2*5=10 3) 9+8=11
4) 4*4=31
Сколько единиц в двоичной записи числа 173?
1) 7
2) 6
3) 5
-/-

4) 4

Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

- 1) 3
- 2) 5
- 3) 4
- 4) 6

Стохастическое моделирование это...

1) моделирование с использованием случайных процессов и явлений

- 2) моделирование специальных экспериментов для создания моделей, когда трудно или невозможно описать связь между входными и выходными параметрами
- 3) моделирование систем, имеющих случайные параметры или процессы
- 4) анализ физических, экономических, биологических, химических закономерностей которые влияют на поведение объекта
- 5) моделирование с помощью аналоговых и гибридных систем

По типу структур баз знаний ЭС можно разделить ...

- 1) на продукционно-фреймовые, логические и т.д.
- 2) на системы управления, системы принятия решений и т.д.
- 3) на экономические, юридические и т.д.
- 4) на решающие задачи кластеризации и классификации

Раздел 3. (Указать один правильный ответ)

Какие из перечисленных свойств алгоритма являются основными (несколько вариантов)

- 1) дискретность
- 2) результативность
- 3) детерменированность
- 4) массовость
- 5) рекурсивность

Адаптивный алгоритм

- 1) обрабатывает некоторую совокупность возможных исходных данных и получает результата
- 2) проверяет выполнение определенных условий
- 3) обладает способностью настраиваться на решаемую задачу
- 4) использует случайные данные, результат его так же в каком-то смысле случайный

Простому поиску в массиве соответствует сложность алгоритма...

- 1) нелинейная полиномиальная
- 2) линейная
- 3) NP
- 4) логарифмическая
- 5) экспоненциального роста

Изучением систем управления занимается ...

- 1) кибернетика
- 2) моделирование
- 3) теория автоматов
- 4) теория алгоритмов
- 5) теория кодирования

В каких задачах находят остовное дерево минимальной длины?

- 1) Прима
- 2) Дейкстры
- 3) Форда-Фалкерсона
- 4) Краскала

Какая из формулировок относится к конечности алгоритма?

- 1) Алгоритм должен всегда давать какой-то результат.
- 2) Алгоритм последовательность отдельных операций.
- 3) Алгоритм не содержит неоднозначных инструкций.
- 4) Алгоритм должен применяться к классу однотипных задач.

Какая из формулировок относится к дискретности алгоритма?

- 1) Алгоритм должен всегда давать какой-то результат.
- 2) Алгоритм последовательность отдельных операций.
- 3) Алгоритм не содержит неоднозначных инструкций.
- 4) Алгоритм должен применяться к классу однотипных задач.

Какая из формулировок относится к детерминированности алгоритма?

1) Алгоритм должен всегда давать какой-то результат.

- 2) Алгоритм последовательность отдельных операций.
- 3) Алгоритм не содержит неоднозначных инструкций.
- 4) Алгоритм должен применяться к классу однотипных задач.

Какая из формулировок относится к массовости алгоритма?

- 1) Алгоритм должен всегда давать какой-то результат.
- 2) Алгоритм последовательность отдельных операций.
- 3) Алгоритм не содержит неоднозначных инструкций.
- 4) Алгоритм должен применяться к классу однотипных задач.

Какая из формулировок относится к логическому алгоритму?

- 1) Алгоритм использует случайные значения величин
- 2) Алгоритм обладает свойством настройки на задачу
- 3) Алгоритм проверяет выполнение определенных условий
- 4) Алгоритм описывает поведение изучаемого процесса

Какая из формулировок относится к адаптивному алгоритму?

- 1) Алгоритм использует случайные значения величин
- 2) Алгоритм обладает свойством настройки на задачу
- 3) Алгоритм проверяет выполнение определенных условий
- 4) Алгоритм описывает поведение изучаемого процесса

Какая из формулировок относится к вероятностному алгоритму?

- 1) Алгоритм использует случайные значения величин
- 2) Алгоритм обладает свойством настройки на задачу
- 3) Алгоритм проверяет выполнение определенных условий
- 4) Алгоритм описывает поведение изучаемого процесса

Какая из формулировок относится к моделирующему алгоритму?

- 1) Алгоритм использует случайные значения величин
- 2) Алгоритм обладает свойством настройки на задачу
- 3) Алгоритм проверяет выполнение определенных условий

4) Алгоритм описывает поведение изучаемого процесса

Динамическая структура, изменяющаяся только по закону LIFO это ...

- 1) Очередь
- 2) Стек
- 3) Список
- 4) Массив

Динамическая структура, изменяющаяся только по закону FIFO это ...

- 1) Очередь
- 2) Стек
- 3) Список
- 4) Массив

Динамическая структура, допускающая произвольную вставку это ...

- 1) Очередь
- 2) Стек
- 3) Список
- 4) Массив

Среди указанных структур статической является только ...

- 1) Очередь
- 2) Стек
- 3) Список
- 4) Массив

Какое из выражений дается в блок-схеме алгоритма внутри ромба?

- 1) A > 2
- 2) N=N+1
- 3) N=1,10
- 4) начало

Какое из выражений дается в блок-схеме алгоритма внутри шестиугольника?

- 1) A > 2
- 2) N=N+1
- 3) N=1,10
- 4) начало

Какое из выражений дается в блок-схеме алгоритма внутри прямоугольника?

- 1) A > 2
- 2) N=N+1
- 3) N=1,10
- 4) начало

Какая из скоростей роста определяет все реально выполнимые алгоритмы?

- 1) полиномиальная
- 2) линейная
- 3) логарифмическая
- 4) факториальная

Какая из скоростей роста характерна для бинарного поиска в массиве?

- 1) квадратичная
- 2) линейная
- 3) логарифмическая
- 4) неполиномиальная

Какая из фигур на блок схеме обозначает вывод данных?

- 1) ромб
- 2) прямоугольник с 2-мя черточками
- 3) параллелограмм
- 4) шестиугольник

Какая из фигур на блок схеме обозначает цикл с известным числом повторений?

- 1) круг
- 2) прямоугольник
- 3) овал
- 4) шестиугольник

В каком методе определяются кратчайшие пути между вершинами?

- 1) метод балансировки
- 2) метод Дейкстры
- 3) метод Краскала
- 4) метод динамического программирования

Какой из вариантов методов используют в задаче Дейкстры?

- 1) метод последовательного перехода к оптимальному значению
- 2) метод Флойда-Уоршела
- 3) метод Прима
- 4) метод «разделяй и властвуй» деления задачи на две

Какое из правил относится к определению потока в сети?

- 1) правило Киргофа
- 2) правило избыточности
- 3) правило тетрад
- 4) правило Цезаря

Какой термин в формулировке задачи Форда-Фалкерсона не используется?

- 1) Простое сечение
- 2) Насыщенное ребро
- 3) Насыщенное сечение
- 4) Матрица смежности

Какой из методов сортировки связан с рекурсией?

- 1) метод дихотомии
- 2) метод Хоара
- 3) бинарный метод

4) метод пузырька

Какой из методов служит для быстрого поиска?

- 1) метод дихотомии
- 2) метод Хоара
- 3) бинарный метод
- 4) метод пузырька

Какой из алгоритмов добавляет наименьшие ребра в граф?

- 1) алгоритм Прима
- 2) алгоритм Дейкстры
- 3) алгоритм Краскала
- 4) алгоритм Хафмена
- 5) алгоритм Хоара

Какой из алгоритмов строит только бинарные деревья?

- 1) алгоритм Прима
- 2) алгоритм Дейкстры
- 3) алгоритм Краскала
- 4) алгоритм Хафмена
- 5) алгоритм Хоара

Какая величина определяется в теореме Форда-Фалкерсона?

- 1) максимальный поток
- 2) цикл по всем вершинам
- 3) цикл по всем ребрам
- 4) трансверсаль

3.3. Задания контрольной работы

- 1. Сколько бит информации несёт сообщение о том, что из колоды карт достали карту черной масти?
- 2. Раскодировать 0011111, используя 16-ричные кодирования.
- 3. Простейший дискретный источник (п=5) описывается схемой:

X5	X4	X2	X3	\mathbf{x}_1
0,341	0,289	0,187	0,171	0,012

Закодировать сообщения источника кодом Хаффмана. Найти среднюю и минимальную длину кодового слова.

- 4. Провести кодирование по методу Фано двухбуквенных комбинаций, когда алфавит состоит из двух букв A и Б, имеющих вероятности P(A) = 0,8 и P(Б) = 0,2.
- 5. Сравните эффективность кодов Фано и Хаффмана при кодировании алфавита из десяти букв, которые встречаются с вероятностями 0,3; 0,2; 0,1; 0,1; 0,0; 0,05; 0,04; 0,03; 0,03.

3.4. Вопросы к экзамену

- 1. Информатика как наука и вид практической деятельности. Место информатики в системе наук.
- 2. Информация, основные виды информации. Непрерывная и дискретная информация.
- 3. Количество информации. Единицы измерения информации. Кодирование информации.
- 4. Теория кодирования. 3 подхода к определению количества информации.
- 5. Теория кодирования. Оптимальное кодирование. Теоремы Шеннона.
- 6. Теория кодирования. Методы сжатия информации. Коды Шеннона-Фано.
- 7. Теория кодирования. Методы сжатия информации. Коды Хаффмана.

- 8. Теория кодирования. Методы сжатия информации. Кодирование методом Лемпел-Зива.
- 9. Теория кодирования. Методы восстановления информации. Биты четности и дублирование информации.
- 10. Теория кодирования. Методы восстановления информации. Расстояние Хэмминга. Коды Хэмминга.
- 11. Понятие системы счисления. Позиционные и непозиционные системы счисления. Примеры. Представление чисел в различных системах счисления.
- 12. Системы счисления. Преобразование чисел в различных системах счисления.
- 13. Системы счисления, используемые в ЭВМ. Особенности систем счисления с основанием 2,8,16.
- 14. Системы счисления. Методы преобразования чисел из десятичной системы счисления в двоичную.
- 15. Математические операции в различных системах счисления. Примеры.
- 16. Представление информации в ЭВМ. Текстовая и графическая информация.
- 17. Представление информации в ЭВМ. Графическая и мультимедиа информация.
- 18. Представление чисел в ЭВМ. Прямой, обратный и дополнительный код.
- 19. Представление чисел в ЭВМ. Числа с фиксированной и плавающей запятой, нормализованный код.
- 20. Понятие алгоритма. Принцип потенциальной осуществимости. Основные свойства алгоритмов. Формы записи алгоритмов.
- 21. Классификация алгоритмов. Понятие исполнителя алгоритмов. Блок-схемы описания алгоритмов.
- 22. Принципы программирования. Методы разработки и анализа алгоритмов
- 23. Сложность алгоритмов. Варианты оценки сложности. Асимптотическая сложность алгоритма.
- 24. Реально выполнимые алгоритмы. Полиномиальные алгоритмы. Совпадение классов полиномиальных и реально выполнимых алгоритмов. Примеры полиномиальных алгоритмов.
- 25. Не полиномиальные алгоритмы. Примеры задач НП. Замкнутость класса задач НП. Понятие неразрешимой задачи. Экстра-алгоритм.
- 26. Основные методы разработки эффективных алгоритмов: итерационные формулы, рекурсивные алгоритмы, метод балансировки дерева, динамическое программирование.
- 27. Основные методы эффективного представления данных основные модели данных.
- 28. Основные методы эффективного представления данных динамические структуры данных.
- 29. Моделирование как основной метод научного познания. Понятие модели, классификация моделей.
- 30. Понятие автомата. Дискретный характер ЭВМ.
- 31. Понятие жадного алгоритма. Матроиды и их свойства.
- 32. Алгоритмы оптимизации на сетях и графах. Алгоритмы Прима и Краскала.
- 33. Алгоритмы оптимизации на сетях и графах. Алгоритмы Дейкстры и Флойда.
- 34. Алгоритмы оптимизации на сетях и графах. Задача Форда-Фалкерсона о потоках в сетях. Алгоритмы решения задачи о максимальном потоке
- 35. Понятие о кибернетике. Система управления и ее реализация. Обратная связь в системе управления. Системы прогноза.

3.5. Балльно-рейтинговая аттестация

Экзамен может быть выставлен автоматически в рамках балльной системы, разработанной преподавателем и доведенной до сведения обучающихся на первом занятии

Распределение баллов по темам и видам работ

№ темы	Формы оцениваемой работы	Количество часов	Макс. количество баллов
Лекции 1-18	Конспекты лекций. Тестирование по темам курса	36	36
Лабораторная работа 1-18	Отчет о выполнении заданий лабораторных работ.	36	54
Самостоятельная работа	Письменный отчет	72	5
Контрольная работа	Отчет о выполнении заданий контрольных работ	36	5
	Итого	180	100

Промежуточная аттестация может быть выставлена с учетом совокупности баллов, полученных обучающимся в рамках текущего контроля, включающего выполнение и защиту лабораторных и контрольных работ, выполнение тестовых заданий.

No	Баллы	Оценки
1.	0-60	Неудовлетворительно
2.	61-75	Удовлетворительно
3.	76-90	Хорошо
4.	91-100	Отлично