МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Тобольский педагогический институт им. Д.И.Менделеева (филиал) Тюменского государственного университета

УТВЕРЖДАЮ
Директор

ОСЕРБЕНИЯ ТОСОВОРНО В СУП

ИНДОВ СУП

ОБОПЬСКИЙ

Д.И. МЕНДЕ ЕВВЗ

Д.И.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

ЭЛЕКТРОНИКА

44.03.04 Профессиональное обучение (по отраслям) Профиль: Сервис мехатронных систем Форма обучения очная

1. Паспорт оценочных материалов по дисциплине

1.1. Перечень компетенций

Код и наименование	Планируемые результаты обучения:
компетенции	(знаниевые/функциональные)
УК-1 Способен	Знает понятия и закономерности предметной области цифровая
осуществлять поиск,	электроника: принципы цифрового представления сигналов, логические
критический анализ и	элементы и их принципиальные схемы, основные устройства
синтез информации,	комбинационной и последовательностной логики, их условное обозначение
применять системный	и применение.
подход для решения	Может построить временную диаграмму сигнала по показаниям
поставленных задач	мультиметра и осциллографа и объяснить по ней работу устройства
	Владеет навыками проведения лабораторного опыта по изучению
	устройств цифровой техники.
ОПК-8 Способен	Знает место изучения элементов дисциплины в профессиональной
осуществлять	подготовке студентов
педагогическую	Может провести анализ нормативной, учебно-методической литературы по
деятельность на основе	профилю подготовки
специальных научных	Может разработать учебно-методические материалы, сделать отбор
знаний	учебного материала

1.2. Паспорт оценочных средств по дисциплине

№	Темы дисциплины в ходе	Код	Наименование оценочного
Π/Π	текущего контроля, вид	компетенции	средства (количество вариантов, заданий и
	промежуточной	(или ее части)	т.п.)
	аттестации		
1.	Базовые логические	УК-1	Лабораторные работы 1-3.
	схемы и интегральные		
	технологии в цифровой	ОПК-8	Задания для самостоятельной работы 1-3.
	электронике		
2.	Операционные узлы и	УК-1	Лабораторные работы 4-9.
	устройства цифровой	ОПК-8	Задания для самостоятельной работы 4-5.
	техники	OHK-6	Задания для самостоятельной работы 4-3.
	Экзамен	УК-1	Теоретический вопрос (16 вопросов).
		ОПК-8	Экспериментальное задание (16 вопросов).

1.3. Показатели, критерии и шкала оценивания сформированности компетенций

	Индикаторы достижения		
Код и наименование	компетенций, соотнесенные с	Оценочные	Критерии оценивания
компетенции	планируемыми результатами	материалы	Критерии оценивания
	обучения		
УК-1 Способен	Знает базовые понятия и законы	Лабораторны	Пороговый уровень: может
осуществлять	электро- и радиотехники,	е работы.	выполнять работы под
поиск,	линейные и нелинейные	Задания для	контролем преподавателя.
критический	элементы электрической цепи и	самостоятель	<i>Базовый уровень:</i> может
анализ и синтез	их условное обозначение,	ной работы.	выполнять работы
информации,	историю и перспективы развития	Экзамен.	самостоятельно.
применять	электроники		Повышенный уровень:
системный	Умеет использовать		готов выполнять работы в
подход для	теоретические знания для		условиях учебно-

	Индикаторы достижения		
Код и наименование	компетенций, соотнесенные с	Оценочные	Критерии оценивания
компетенции	планируемыми результатами	материалы	теритерии оценивания
	обучения		
решения	объяснения работы устройства;		воспитательного процесса
поставленных	классифицировать электрические		с обучающимися.
задач	схемы и машины, обосновать		
	области применения того или		
	иного электронного устройства		
	Может построить вольт-		
	амперную характеристику		
	элементов цепи и временной		
	диаграммы сигнала по		
	показаниям мультиметра и		
	осциллографа		
ОПК-8 Способен	Знает место изучения элементов	Задания для	Пороговый уровень: может
осуществлять	дисциплины в профессиональной	самостоятель	выполнять работы под
педагогическую	подготовке студентов	ной работы.	контролем преподавателя.
деятельность на	Может провести анализ		<i>Базовый уровень:</i> может
основе	нормативной, учебно-		выполнять работы
специальных	методической литературы по		самостоятельно.
научных знаний	профилю подготовки		Повышенный уровень:
	Может разработать учебно-		готов выполнять работы в
	методические материалы,		условиях учебно-
	сделать отбор учебного		воспитательного процесса
	материала		с обучающимися.

2. Виды и характеристика оценочных средств

Текущий контроль осуществляется проверкой наличия конспектов лекций, выполнения заданий в ходе практических занятий, а также самостоятельной работы.

2.1. Лабораторные работы

Практические занятия используются для проведения лабораторных работ.

Лабораторные работы используются для оценки умений по отдельным темам дисциплины. Выполнение лабораторных работ включает в себя 3 этапа:

- 1) **Допуск к лабораторной работе** проходит в виде собеседования для проверки знаний студента по данной теме, необходимых для эффективного выполнения работы.
- 2) **Выполнение и оформление лабораторной работы** во время занятий и самостоятельной работы студентов.
 - 3) Защита лабораторной работы в виде собеседования.

Отчет по лабораторным работам оценивается в баллах «3», «2», «1» или «0», представляет собой письменно оформленную работу.

Содержание отчета и критерии оценки ответа доводятся до сведения обучающихся в начале семестра. Оценка объявляется непосредственно после сдачи отчета по лабораторной работе на текущем занятии.

Балл	Критерий оценивания заданий
3	Задания выполнены правильно в полном объеме.
	Оформление соответствует всем требованиям.
	Может ответить на уточняющие вопросы.
	Использованы наиболее эффективные методы и средства.

2	Задания выполнены правильно и практически полностью.
	Оформление в основном соответствует всем требованиям.
	Может ответить на некоторые уточняющие вопросы.
	Использованы в основном эффективные методы и средства.
1	Задания выполнены частично правильно и не полностью.
	Оформление соответствует отдельным требованиям.
	С трудом может ответить на некоторые уточняющие вопросы.
	Использованы не совсем подходящие методы и средства.

2.2. Задания к самостоятельной работе

Самостоятельная работа используется для подготовки к лабораторным занятиям, для самооценки знаний по отдельным темам дисциплины и подготовки к экзамену, а также для углубления знаний по отдельным темам дисциплины.

Балл	Критерий оценивания заданий к самостоятельной работе
3	Задания выполнены правильно в полном объеме.
	Оформление соответствует всем требованиям.
	Может ответить на уточняющие вопросы.
	Использованы наиболее эффективные методы и средства.
2	Задания выполнены правильно и практически полностью.
	Оформление в основном соответствует всем требованиям.
	Может ответить на некоторые уточняющие вопросы.
	Использованы в основном эффективные методы и средства.
1	Задания выполнены частично правильно и не полностью.
	Оформление соответствует отдельным требованиям.
	С трудом может ответить на некоторые уточняющие вопросы.
	Использованы не совсем подходящие методы и средства.

2.3. Экзамен

Экзамен является формой оценки качества освоения обучающимся основной профессиональной образовательной программы по разделам дисциплины, демонстрирует сформированные навыки и компетенции. По результатам экзамена обучающемуся выставляется оценка «отлично», «хорошо», «удовлетворительно» или «неудовлетворительно».

Экзамен состоит из 2 частей:

- 1) Устный ответ на теоретический вопрос.
- 2) Постановка эксперимента и письменный отчет на экспериментальный вопрос.

Критерии выставления оценки за экзамен

Результаты освоения дисциплины во время экзамена оцениваются степенью полноты ответа на вопросы билета.

Оценка «отлично» (*повышенный уровень:* готов выполнять работы в условиях учебновоспитательного процесса с обучающимися):

- Знает все понятия и закономерности предметной области цифровая электроника: принципы цифрового представления сигналов, логические элементы и их принципиальные схемы, основные устройства комбинационной и последовательностной логики, их условное обозначение и применение.
- Может начертить функциональную схему устройства и объяснить его принцип работы по таблице состояний входных и выходных сигналов.

- Свободно владеет навыками проведения лабораторного опыта по изучению устройств цифровой техники
- Свободно отвечает на дополнительные вопросы.

Оценка «хорошо» (базовый уровень: может выполнять работы самостоятельно):

- Знает почти все понятия и закономерности предметной области цифровая электроника: принципы цифрового представления сигналов, логические элементы и их принципиальные схемы, основные устройства комбинационной и последовательностной логики, их условное обозначение и применение.
- Может начертить функциональную схему устройства и объяснить его принцип работы по таблице состояний входных и выходных сигналов (есть замечания).
- В целом владеет навыками проведения лабораторного опыта по изучению устройств цифровой техники
- Частично отвечает на дополнительные вопросы.

Оценка «удовлетворительно» (*пороговый уровень*: может выполнять работы под контролем преподавателя):

- Знает отдельные понятия и закономерности предметной области цифровая электроника: принципы цифрового представления сигналов, логические элементы и их принципиальные схемы, основные устройства комбинационной и последовательностной логики, их условное обозначение и применение.
- С трудом может начертить функциональную схему устройства и объяснить его принцип работы по таблице состояний входных и выходных сигналов.
- С трудом может провести лабораторный опыт по изучению устройств цифровой техники
- Затрудняется отвечать на дополнительные вопросы по содержанию проекта.

Экзамен (зачет) принимается преподавателем, проводившим занятия, или читающим лекции по данной дисциплине. В случае отсутствия ведущего преподавателя экзамен (зачет) принимается преподавателем, назначенным распоряжением заведующего кафедрой. С разрешения заведующего кафедрой на экзамене (зачете) может присутствовать преподаватель кафедры, привлеченный для помощи в приеме экзамена. Присутствие преподавателей с других кафедр без соответствующего распоряжения ректора, проректора по учебной работе или декана факультета не допускается.

Форма проведения экзамена (зачета) определяется кафедрой и доводится до сведения обучающихся в начале семестра.

Для проведения экзамена ведущий преподаватель накануне получает в деканате зачетно-экзаменационную ведомость, которая возвращается в деканат после окончания мероприятия в день проведения зачета или утром следующего дня. Обучающиеся при явке на экзамен обязаны иметь при себе зачетную книжку, которую они предъявляют преподавателю. Во время экзамена обучающиеся могут пользоваться с разрешения ведущего преподавателя справочной и нормативной литературой, другими пособиями и техническими средствами.

Время для подготовки 40-50 мин. Время ответа - не более 10 минут. Преподавателю предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины. Общее время сдачи экзамена на 1 студента — 15 минут.

Количественная оценка «отлично», «хорошо» или «удовлетворительно», внесенная в зачетную книжку и зачетно-экзаменационную ведомость, является результатом успешного усвоения учебного материала. Результат экзамена в зачетную книжку выставляется в день проведения в присутствии самого обучающегося. Преподаватели несут персональную ответственность за своевременность и точность внесения записей о результатах промежуточной аттестации в зачетно-экзаменационную ведомость и в зачетные книжки.

Если обучающийся явился на экзамен и отказался от прохождения аттестации в связи с неподготовленностью, то в зачетно-экзаменационную ведомость ему выставляется оценка в соответствии с набранными баллами в течение семестра.

Неявка на экзамен <u>при условии нулевой аттестации в течение семестра</u> отмечается в зачетно-экзаменационной ведомости словами «не явился».

Нарушение дисциплины, списывание, использование обучающимися неразрешенных печатных и рукописных материалов, мобильных телефонов, коммуникаторов, планшетных компьютеров, ноутбуков и других видов личной коммуникационной и компьютерной техники во время экзамена запрещено. В случае нарушения этого требования преподаватель обязан удалить обучающегося из аудитории и проставить ему в ведомости оценку «неудовлетворительно».

Обучающимся, не сдавшим экзамен в установленные сроки по уважительной причине, индивидуальные сроки проведения экзамена определяются приказом ректора Университета. Обучающиеся, имеющие академическую задолженность, сдают экзамен в сроки, определяемые Университетом. Информация о ликвидации задолженности отмечается в экзаменационном листе. Допускается с разрешения деканата и досрочная сдача экзамена с записью результатов в экзаменационный лист.

Инвалиды и лица с ограниченными возможностями здоровья могут сдавать экзамены в сроки, установленные индивидуальным учебным планом. Инвалиды и лица с ограниченными возможностями здоровья, имеющие нарушения опорно-двигательного аппарата, допускаются на аттестационные испытания в сопровождении ассистентов-сопровождающих.

3. Оценочные средства

3.1. Лабораторные работы

ЛР 1. Исследование логических элементов ИЛИ-НЕ, И-НЕ, НЕ, ИЛИ, И, исключающее ИЛИ.

Вопросы к допуску:

- Какие виды логики вы знаете?
- Каким образом представляются цифровые коды в электрических схемах?
- Что такое комбинационные схемы?
- Определите логические элементы, исследуемые в лабораторной работе.

Часть 1.

Oборудование: стенд универсальный, блок питания, плата $\Pi1$, технологические карты I-1-I-9.

Задания:

Исследуйте работу логических устройств, последовательно используя технологические карты. Выполните для каждой схемы следующие задания:

- 1. Начертите схему включения.
- 2. Изучите работу устройства и заполните таблицу истинности.
- 3. Используя полученные данные, определите логические элементы.
- 4. Назовите выполняемые ими функции алгебры логики.
- 5. Обозначьте логические элементы на схеме соответствующими условными обозначениями
- 6. Запишите формулы, выражающие связь между входными и выходными характеристиками.

Отчетная документация:

- а) наименование, цель работы, оборудование;
- б) функциональные схемы;
- в) выводы по заданиям.

Вопросы к защите:

- По светодиодному индикатору определите уровень логического сигнала на выходе схемы.
- Определите по выходным данным типы логических элементов в схеме.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

Часть 2.

Oборудование: стенд универсальный, блок питания, плата $\Pi1$, технологические карты I-1-I-9; моноблочный стенд «Основы цифровой и микропроцессорной техники», цифровой осциллограф типа АКИП 4115/1A.

Учебно-методические материалы: Основы цифровой и микропроцессорной техники: Методические указания к проведению лабораторных работ. Часть 1. — Челябинск: Учтех-Профи, 2018.-52 с.

Задания:

Исследуйте работу логических устройств, последовательно используя технологические карты. Выполните для каждой схемы следующие задания:

- 1. Начертите схему включения.
- 2. Изучите работу устройства и заполните таблицу истинности.
- 3. Используя полученные данные, определите логические элементы.
- 4. Назовите выполняемые ими функции алгебры логики.
- 5. Обозначьте логические элементы на схеме соответствующими условными обозначениями
- 6. Запишите формулы, выражающие связь между входными и выходными характеристиками.

Задания: Методические указания, ЛР 1.

Требования к отчету:

- 1) наименование и цель работы;
- 2) принципиальные электрические схемы для выполненных экспериментов;
- 3) результаты снятых характеристик в таблицах;
- 4) обработанные осциллограммы;

Вопросы к защите:

- Поясните работу схемы, ее структурные компоненты.
- По снятым осциллограммам объясните полученные результаты.
- Каковы назначение и область применения логических элементов?

Цель: изучить принципы действия RS-триггеров, развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный, блок питания, плата П2, технологические карты II-1 – II-3; моноблочный стенд «Основы цифровой и микропроцессорной техники».

Вопросы к допуску:

- Какое устройство называется триггером?
- В чем отличие последовательностных схем от комбинационных?
- Назовите виды триггеров.
- Какое обозначение имеют входы и выходы у RS-триггеров?
- Начертите функциональную схему RS-триггера на логических элементах ИЛИ-HE.
- Начертите функциональную схему RS-триггера на логических элементах И-НЕ.
- Назовите режимы работы RS-триггера.
- Что означает термин «запрещенная комбинация» для RS-триггера?

Задания:

Исследуйте работу устройств, последовательно используя технологические карты. Выполните для каждой схемы следующие задания:

- 1. Выделите в схеме триггер.
- 2. Запишите название триггера,
- 3. Составьте таблицу изменений состояний в зависимости от входных сигналов, активные сигналы обозначайте стрелкой (\uparrow высокий уровень логическая единица, \downarrow низкий уровень логический ноль),
- 4. Определите тип входа (R или S), укажите эти обозначения в таблице и обозначьте на схеме (для карт II-1 и II-2),
 - 5. Обозначьте режимы работы триггера,
 - 6. Составьте временную диаграмму состояний триггера.

Отчетная документация:

- а) наименование, цель работы, оборудование;
- б) функциональные схемы;
- в) выводы по заданиям.

Вопросы к защите:

- Что означает понятие асинхронного триггера.
- Объясните назначение входов триггеров.
- Что такое активный уровень сигнала?
- Расскажите по диаграмме о состоянии триггера в каждый такт работы.
- Определите по выходным данным типы логических элементов в схеме.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 3. Исследование D-триггера и регистров.

Цель: изучить принципы действия D-триггеров, последовательных и параллельных регистров; развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный, блок питания, платы П2, П3, перемычка, технологические карты II-4, II-5, II-6, III-1, III-2.

Вопросы к допуску:

- Какое устройство называется триггером?
- Назовите входы синхронного D-триггера, что они обозначают?
- Что означает понятие синхронного триггера?
- Начертите функциональную схему D -триггера.
- Назовите режимы работы D -триггера.
- Какое устройство называется регистром? Для чего он предназначен?
- Какие типы регистров знаете? Чем они различаются?
- Объясните понятие «разрядность». Что означает выражение «4-разрядный регистр»?

Задания:

- 1. Выполните для схемы II-4 следующие задания:
 - Выделите в схеме триггер, запишите название триггера.
 - Составьте таблицу изменений состояний в зависимости от входных сигналов, наличие синхроимпульсов обозначайте стрелкой (↑ - высокий уровень – логическая единица).
 - Определите тип входа (R или S), укажите эти обозначения в таблице и обозначьте на схеме (для карт II-1 и II-2),
 - Обозначьте режимы работы триггера,
 - Составьте временную диаграмму состояний триггера.
- 2. Выполните для схем II-5, II-6 следующие задания:

- Запишите название устройства с указанием его разрядности, проанализируйте его работу.
- запишите название регистра,
- запишите в регистр несколько различных кодовых слов, результаты внесите в таблицу зависимости выходных состояний от входных сигналов,
- нарисуйте условное обозначение устройства,
- сделайте вывод: за сколько тактов записывается в данном регистре одно кодовое слово.
- 3. Выполните для схем III-1, III-2 следующие задания:
 - запишите название регистра с указанием его разрядности,
 - зарисуйте внутреннюю логическую структуру,
 - запишите в регистр несколько различных кодовых слов, результаты внесите в таблицу зависимости выходных состояний от входных сигналов,
 - сделайте вывод: за сколько тактов записывается в данном регистре одно кодовое слово.

Отчетная документация:

- а) наименование, цель работы, оборудование;
- б) функциональные схемы;
- в) выводы по заданиям.

Вопросы к защите:

- Каким образом необходимо изменить функциональную схему, чтобы из двухразрядного регистра получить четырехразрядный?
- Сколько тактов записи необходимо, чтобы записать кодовое слово в 4-разрядный параллельный (последовательный) регистр?
- Сколько разных слов можно записать с помощью 2- (4-) разрядного регистра?
- Объясните на каждой функциональной схеме, как вы осуществляли запись кодового слова?
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 4. Исследование комбинационных преобразователей кодов.

Цель: изучить принципы действия дешифраторов и мультиплексора; развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный, блок питания, плата $\Pi 4$, технологические карты IV-1, IV-2, IV-3.

Вопросы к допуску:

- Какое устройство называется шифратором? Для чего он предназначен?
- Какое устройство называется дешифратором? Для чего он предназначен?
- Какое устройство называется мультиплексором? Для чего он предназначен?
- Какое устройство называется демультиплексором? Для чего он предназначен?
- Что означает выражение «двоичная система кодирования информации» (десятичная, шестнадцатеричная)?

Задания:

- 1. Выполните для схем IV-1 и IV-2 следующие задания:
 - Проанализируйте работу дешифратора.
 - Составьте таблицу изменений состояний в зависимости от входных сигналов.
 - Сделайте вывод: из какой системы кодирования в какую устройство переводит?
 - Сколько разрядов имеет двоичное число в схеме IV -2? Какую задачу выполняет тумблер SA5?

- 2. Выполните для схемы IV-3 следующие задания:
 - Найдите на схеме мультиплексор.
 - Проверьте по схеме, откуда информация поступает на входы мультиплексора,
 - Проверьте, с помощью какого устройства задается адрес мультиплексору,
 - Задайте мультиплексору адрес того информационного входа, сигнал с которого вы хотите послать на его выход,
 - Заполните таблицу зависимости выходного сигнала от входной информации и заданного мультиплексору адреса, вводя различные адреса и подавая различную информацию на входы.

Отчетная документация:

- а) наименование, цель работы, оборудование;
- б) функциональные схемы;
- в) выводы по заданиям.

Вопросы к защите:

- Какой тип индикации используется в схеме IV-2?
- Отличается ли дешифратор, переводящий в десятичную систему кодирования от дешифратора, переводящего в шестнадцатеричную систему?
- Для чего предназначен мультиплексор?
- Объясните по функциональной схеме, как работает мультиплексор.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 5. Исследование счетчиков.

Цель: изучить принципы действия кольцевого счетчика, двоичных асинхронных счетчиков (суммирующего, вычитающего и реверсивного); развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный, блок питания, платы П2, П3, П5, технологические карты II-7, III-1, V-1, V-2, V-3.

Вопросы к допуску:

- Какое устройство называется Т-триггером? Для чего он предназначен?
- Какое устройство называется счетчиком? Для чего он предназначен?
- Какая величина характеризует работу счетчика?
- Какие типы счетчиков вы знаете? Чем они различаются?

Задания:

- 1. Выполните для схемы ІІ-7 следующие задания:
 - Проанализируйте работу Т-триггера.
 - Впишите в таблицу буквенное обозначение входа.
 - Заполните таблицу зависимости состояния триггера от входных сигналов.
 - Нарисуйте условное обозначение этого триггера?
- 2. Выполните для схемы III-1 следующие задания:
 - Нарисуйте внутреннюю логическую схему кольцевого счетчика.
 - Реализуйте 1 этап его работы на выходах счетчика выставьте комбинацию 0001, занесите данные в таблицу.
 - Реализуйте 1 этап его работы начните подачу и счет импульсов, на каждом такте заносите данные в таблицу.
 - Определите модуль счета этого счетчика.
 - Сделайте вывод о том, как оценивается результат счета импульсов.
- 3. Выполните для схемы V-1 следующие задания:

- Выполните счет импульсов, поступающих на тактовый вход двоичного суммирующего счетчика с переменным коэффициентом счета, результаты работы занесите в таблицу.
- Определите модуль счета этого счетчика.
- Отобразите работу счетчика на временных диаграммах, учитывая, что он работает по срезу импульсов.
- Используя таблицу, уменьшите коэффициент счета, соединяя для этого перемычками выходы Y1-Y4 со входами X1-X4.
- Сделайте вывод о том, в виде чего изображается в данном счетчике результат счета импульсов.
- 4. Выполните для схемы V-2 следующие задания:
 - Выполните счет импульсов, поступающих на тактовый вход двоичного суммирующего счетчика с переменным коэффициентом счета, результаты работы занесите в таблицу.
 - Определите модуль счета этого счетчика.
- 5. Выполните для схемы V-3 следующие задания:
 - Определите на функциональной схеме каждое устройство, подпишите их.
 - Проанализируйте работу счетчика и схемы в целом.
 - Запишите, какую функцию выполняет каждое из устройств, входящих в состав схемы.

Отчетная документация:

- а) наименование, цель работы, оборудование;
- б) функциональные схемы;
- в) выводы по заданиям.

Вопросы к защите:

- Как из последовательного регистра получить кольцевой счетчик?
- Если двоичный и кольцевой счетчики состоят из 8 триггерных ячеек, то чему равны их модули счета?
- Используя схемы, объясните работу счетчиков.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 6. Исследование сумматора и компаратора.

Цель: изучить принципы действия сумматора и компаратора, развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный, блок питания, плата П3, технологическая карта III-3; моноблочный стенд «Основы цифровой и микропроцессорной техники».

Вопросы к допуску:

- Какое устройство называется сумматором? Для чего он предназначен?
- Чем отличается арифметическая операция сложения от логической?
- Нарисуйте схему полусумматора, его недостатки.
- Где используются сумматоры?

Задания:

- 1. Выполните для схемы III-3 следующие задания:
 - Исследуйте схему. Найдите сумматор. Какие устройства обеспечивают работу сумматора, для чего они предназначены?

 Проанализируите работу сумматора, ответьте на вопросы
откуда подаются сигналы на входы А1 – А4 для задания числа А:
какие светодиоды дают наглядное представление о числе А:
откуда подаются сигналы на входы В1 – В4 для задания числа В:

какие светодиоды дают наглядное представление о числе В:	
на какие устройства индикации поступают выходные сигналы (сумма):	

– Найдите суммы различных пар двоичных чисел A и B (не менее 10 сумм), результаты работы занесите в таблицу.

Число А			Число В				Сумм	ıa	Проверка (в десятичном коде)				
A4	A3	A2	A1	B4	В3	B2	B1	P	S	число	A	В	A+B

- 2. Выполните для схемы компаратора (моноблочный стенд «Основы цифровой и микропроцессорной техники») следующие задания:
 - Нарисуйте функциональную схему.
 - Проанализируйте его работу.
 - Сравните пары двоичных чисел A и B (не менее 10 пар), данные занесите в таблицу.

Число А					Чис	ло В		Сравнение			
A4	A3	A2	A1	B4 B3 B2 B1				A=B	A <b< td=""><td>A>B</td></b<>	A>B	

Вопросы к защите:

- Какой разрядности сумматор приведен на схеме?
- Используя схему и таблицу состояний, поясните работу сумматора.
- Какой разрядности компаратор приведен на схеме?
- Используя схему и таблицу состояний, поясните работу компаратора.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 7. Исследование ОЗУ.

Цель: изучить принципы действия оперативного запоминающего устройства, развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный «ОАВТ», блок питания, плата П6, технологическая карта VI-3.

Вопросы к допуску:

- Для чего предназначено запоминающее устройство?
- К какому типу ЗУ относится оперативное ЗУ?
- Объясните организацию ОЗУ.

Задания:

Исследуйте работу устройства, используя технологическую карту. Выполните следующие задания:

- 1. Найдите на схеме ОЗУ. Проанализируйте работу схемы:
 - с какого устройства подаются сигналы на входы ОЗУ для задания адреса (входы A1, A2, A4, A8):

_	с какого устройства	подаются	данные	на	информационные	входы	ОЗХ	D4	И
	регистра D8 (входы I	D1, D2, D4,	D8):						

- 2. Данные в схему подаются с помощью суммирующего счетчика D-10, результат которого через мультиплексор D2 подается на 7-сегментный блок индикации. Кроме блока индикации данные из мультиплексора поступают на общую шину, которая подключена к информационным входам всех устройств схемы. Пронаблюдайте это.
- 3. Схема имеет мультиплексный способ организации общей шины данных: в зависимости от состояния входа А мультиплексор соединяет свои выходы либо со счетчиком, либо с ОЗУ с помощью кнопки SB2 (см. таблицу ниже):

A	Информация на выходах
0	X4 X3 X2 X1
1	Y4 Y3 Y2 Y1

4. Запишите в ОЗУ произвольную информацию (заполните не менее 8 ячеек). Параллельно фиксируйте свои действия в таблице:

	Адрес ячейки памяти	Записываемые данные
Пример:	A5	d (13)

Вопросы к защите:

- Какой объем памяти содержит данное ОЗУ?
- Какую организацию имеет данное ОЗУ?
- Используя схему и таблицу состояний, поясните работу ОЗУ.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 8. Исследование АЛУ.

Цель: изучить принципы действия арифметико-логического устройства, развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный «ОАВТ», блок питания, плата П6, технологическая карта VI-1.

Вопросы к допуску:

- Для чего предназначено арифметико-логическое устройство?
- С каким числом операндов работает АЛУ?
- Какого рода входы и выходы имеет типичное АЛУ?

Задания:

Исследуйте работу устройства, используя технологическую карту. Выполните следующие задания:

цующие	задания.
1. Найд	ците на схеме ОЗУ. Проанализируйте работу схемы:
_	какую разрядность имеют операнды А и В:
_	сколько операций содержит список команд данного АЛУ:
_	с какого устройства подаются сигналы на вход АЛУ для задания операнда А:
_	с какого устройства подаются сигналы на вход АЛУ для задания операнда В:
_	—— с какого устройства подаются сигналы на вход АЛУ для задания кода операции s.

- 2. Данные в схему подаются с помощью суммирующего счетчика с предустановкой D-10, результат которого через дешифратор D-3 подается на 7-сегментный блок индикации. Пронаблюдайте это.
- 3. Кроме дешифратора данные со счетчика, изображенные на схеме в виде 4-разрядной шины, поступают на информационные D-входы регистров D-5, D-6 и D-7. Убедитесь в этом, следуя по проводам.
- 4. Для задания в АЛУ операнда или кода операции, необходимо данные со счетчика записать в соответствующий регистр. Для этого в данный регистр посылается сигнал на вход синхронизации. Проследите по проводам, с какого устройства идет сигнал на входы синхронизации: _______
- 5. Ознакомьтесь с таблицей, содержащей коды некоторых операций из списка команд данного АЛУ:

	Код операции			Тип опомочни
P_0	M	S код (16)	Операция (сигнал на выходе)	Тип операции
1	1	3	0000	
1	1	C	1111	Присвоение или
1	1	F	A	логические
1	1	0	\overline{A}	операции над
1	1	A	В	одним операндом
1	1	5	\overline{B}	
1	1	Е	$A \lor B$	
1	1	1	$\overline{A \vee B}$	
1	1	В	$A \wedge B$	Логические
1	1	4	$\overline{A \wedge B}$	операции над двумя операндами
1	1	6	$A \oplus B$	двуни операндами
1	1	9	$\overline{A \oplus B}$	
1	0	9	A + B	
0	0	6	A - B	Арифметические
1	0	С	A + A	операции
1	0	F	A - 1	

6. Произведите с помощью АЛУ несколько операций (не менее 10) различного типа. Сделайте проверку в двоичном коде для логических операций. Данные занесите в таблицу:

Операция	Операн	нд (16) В	S	P_0	M	Результат F	Проверка в двоичном коде (для логических
4 D			Е	1	1	D	операций) V 1 0 0 0
$A \lor B$	4	D	Е	I	1	D	1101

Вопросы к защите:

- Сколько операций содержит список команд данного АЛУ?
- Объясните работу схемы.
- По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.

ЛР 9. Исследование микроЭВМ.

Цель: изучить принципы действия микроЭВМ, развить навыки оформления их работы и функциональных электрических схем.

Оборудование: стенд универсальный «ОАВТ», блок питания, плата П6, технологическая карта VI-3.

Вопросы к допуску:

- Из каких блоков состоит ЭВМ?
- Каково назначение каждого из блоков?

Залания:

Исследуйте работу устройства, используя технологическую карту. Выполните следующие задания:

- 1. Найдите на схеме ОЗУ. Проанализируйте работу схемы.
- 2. Выполните арифметические и логические действия (варианты примеров в конце работы). Выполнение каждого задания фиксируйте в таблице. Для этого:
 - определите очередность выполнения каждого действия, обозначьте номер каждого действия на примере;

TT	3 1 4 2
Например	A + (B - C) + (A - B), при операндах $A=8$, $B=6$, $C=3$.

– занесите в таблицу данные, которые будете вводить в ЭВМ (адрес ячейки памяти, операция, операнды A и B, код операции S, P₀, M).

**	№ Адрес ячейки		Опородия	Операнд		C	D	M	Результ
Например	действия	памяти ОЗУ, А	Операция	A	В	S	$\mathbf{P_0}$	IVI	ат F
	1	A1	B-C	6	3	6	0	0	
	2	A2	A – B	8	6	6	0	0	
	3	A3	A + A1	8	A1	9	1	0	
	4	A4	A3 + A2	A3	A2	9	1	0	

- последовательно выполняйте каждое действие, результат заносите в соответствующие ячейки памяти ОЗУ; при выполнении последующих действий учитывайте, что в некоторых действиях в качестве операндов используется содержимое соответствующих ячеек памяти ОЗУ.
- Вносите полученные результаты в таблицу.
- При выполнении логического примера делайте проверку каждого действия в двоичном коде.

Арифметический пример:	

№	Адрес ячейки	Опородија	Опе	ранд	S	D	M	Розуни тот Г
действия	памяти ОЗУ, А	Операция	A	В	3	$\mathbf{P_0}$	IVI	Результат F

	Адрес	Операнд					,	Проверка в	
№	ячейки памяти ОЗУ, А	Операция	A	В	S	P_0	M	Резуль тат, F	двоичном коде

Варианты заданий:

1 вариант

1.
$$[A-(B+C)-D]+\{[C+(D-B)+(A-C)]-B\}$$

2. $[(\overline{A \lor B} \land C \lor A) \oplus \overline{C}] \land (\overline{A \land C} \lor \overline{B \land C})$
 $A = 10: B = 2: C = 4: D = 3.$

1.
$$[(C+D)-B]+A-\{[(A-B)+C+(A-D)]-B\}$$

2.
$$\left[\left(\overline{A \vee B} \wedge C \vee A \right) \oplus \overline{C} \right] \wedge \left(\overline{A \wedge C} \vee \overline{B \wedge C} \right)$$

 $A = 9: B = 3: C = 2: D = 4.$

3 вариант

1.
$$\{[A-(C+D)-B]+C\}+\{[D-(C+B)+A]-(B+D)\}$$

2.
$$\left[\left(\overline{A \oplus B} \vee D \wedge \overline{C}\right) \wedge \overline{B \vee C}\right] \oplus \left[\left(\overline{A \vee B}\right) \wedge \overline{C} \wedge C \wedge \overline{D}\right]$$

 $A = 14; B = 3; C = 2; D = 6.$

4 вапиант

1.
$$\{A - [(B+C+D)-(C+B)]\} - \{[(A-B)+C]-D\}$$

2.
$$\{\!\!\{\!\!\{D\vee\overline{A\wedge B}\}\!\!\}\oplus \{\!\!\{\overline{D}\vee C\}\!\!\}\!\!\setminus \{\!\!\{A\vee\overline{B\vee C}\}\!\!\setminus \{\!\!\{A\vee\overline{B\vee C}\}\!\!\setminus \{\!\!\{B\oplus D\}\!\!\}\!\!\}$$

 $A=14; B=3; C=2; D=6.$

5 вариант

1.
$$\{[C-(B+A+D)]+A\}+\{[(C+D)^{-1}(A+B)]+D\}$$

2.
$$\{(\overline{A \wedge B} \vee C) \oplus (\overline{C} \vee D)] \wedge \overline{B} \} \wedge [(\overline{B \oplus C} \vee \overline{A}) \wedge \overline{A \wedge D}]$$

 $A = 4; B = 6; C = 14; D = 1.$

6 вариант

1.
$$\{[(B+A)-D+(B-A)]-C\}+\{C-[(A+B)-(B+D)]\}$$

2.
$$\{(A \lor B) \oplus (\overline{C \land B})\} \lor (\overline{B} \land \overline{C})\} \lor \{(A \lor \overline{B} \lor C) \oplus (\overline{D} \land C)\} \land A\}$$

 $A = 4; B = 6; C = 8; D = 1.$

7 вариант
1.
$$\{[(B+D)-A]-(C+D)\}+\{[(B-D)+C]+(D-A)\}$$

2.
$$\{(A \lor B) \oplus (D \land C \land A)\} \lor \overline{D}\} \lor \left[(A \lor \overline{B \lor C} \land D) \oplus \overline{A \land \overline{B} \lor C}\right]$$

$$A = 2$$
; $B = 8$; $C = 5$; $D = 4$.

8 вариант

1.
$$\{[(B-D)-(A+C)]-(D-A)\}-\{[(C+D)-B]+(A+D)\}$$

2. $[(A \oplus \overline{B \wedge C}) \vee (\overline{D} \vee \overline{A \wedge C})] \wedge \{[(A \wedge \overline{B \wedge C} \wedge D) \vee \overline{A}] \oplus \overline{A \wedge D}\}$

2.
$$[(A \oplus \overline{B \wedge C}) \vee (\overline{D} \vee \overline{A \wedge C})] \wedge [(A \wedge \overline{B \wedge C} \wedge D) \vee \overline{A}] \oplus \overline{A \wedge D}]$$

$$A = 2; B = 8; C = 5; D = 4.$$

1.
$$\{[(C-D)-A]+(A-B)-B\}+\{[(C-A)+(B+D)]-(A+B)\}$$

2. $\{A \land (B \oplus \overline{C}) \lor \overline{B} \land \overline{\overline{D}} \} \land \overline{\overline{A}} \land D\} \lor [\overline{(D \lor A) \oplus \overline{B}} \land \overline{\overline{A}} \lor C]$
 $A = 6; B = 4; C = 14; D = 2.$

10 вариант

1.
$$\{[(C-A)+B]+(A+D)-C\}+\{[(C+D)+(B+D)-B]-(C-A)+B\}$$

2.
$$\{(D \wedge A) \vee \overline{C}\} \oplus \overline{B \vee D}\} \oplus \left[\left(A \wedge \overline{B \wedge \overline{C \wedge D}}\right) \vee \left(C \wedge \overline{A}\right)\right]$$

 $A = 6; B = 4; C = 10; D = 1.$

Вопросы к защите:

- Каково назначение каждого из блоков?
- Покажите каждый из блоков на схеме ЭВМ и соответствующую интегральную схему на плате.
- Объясните, как работает микроЭВМ на примере выполнения любого действия (на выбор преподавателя).

3.3. Задания для самостоятельной работы

Самостоятельная работа используется для подготовки к практическим занятиям, а также для оценки знаний и умений по отдельным темам дисциплины (задания).

Задание 1. Исследование области применения знаний о цифровой электронике в профессионально-педагогическом процессе

Цель: определить области применения знаний об изучаемых устройствах в профессионально-педагогическом процессе.

Вопросы к допуску:

- Что такое цифровая электроника?
- Что является объектами изучения в цифровой электронике?
- Каким образом представляются цифровые коды в электрических схемах?

Часть 1. Изучите ФГОС и учебный планы, определите, какое место в подготовке обучающихся занимает цифровая электроника. Выводы представьте в виде таблицы (стандарт, дисциплины, предмет изучения):

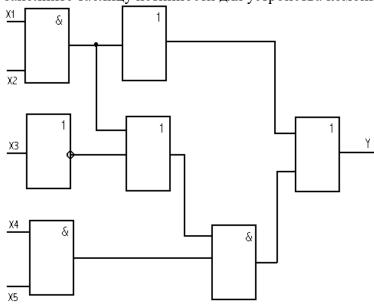
- 1) специальность «15.02.10 Мехатроника и мобильная робототехника».
- 2) специальность «13.02.09 Монтаж и эксплуатация линий электропередач».
- 3) специальность «15.02.14 Оснащение средствами автоматизации технологических процессов и производств (по отраслям)».

- 4) рабочая профессия «Слесарь по контрольно-измерительным приборам и автоматике» (с указанием разряда).
- 5) рабочая профессия «Мастер контрольно-измерительным приборов и автоматики» (с указанием разряда).
- 6) рабочая профессия «Электромонтер по ремонту и обслуживанию электрооборудования» (с указанием разряда).

Сделайте вывод о том, какие группы специальностей и рабочих профессий предусматривают изучение цифровой электроники.

Источник: https://classinform.ru/fgos.html

Часть 2.


Подготовьте **мультимедийную презентацию** (не менее 5 слайдов) на тему «Цифровая электроника в профессии ...». Возьмите конкретную профессию (или специальность) и разработайте презентацию для профессиональной ориентации абитуриентов. Покажите, какими компетенциями они овладеют, где смогут работать, какие виды деятельности выполнять, какова примерная заработная плата работников, которые умеют выполнять эти работы.

Отчетная документация:

- а) наименование и цель работы;
- б) отчет по заданию 1 (стандарт, дисциплины, предмет изучения) в виде таблицы.
- в) отчет по заданию 2 в виде презентации.

Задание 2. Конспект и примеры по теме «Основные положения, функции, законы и тождества алгебры логики»

- 1. Запишите основные законы и тождества алгебры логики.
- 2. Используя таблицы истинности, докажите справедливость законов алгебры логики:
 - а) дистрибутивность относительно сложения;
 - б) правил де Моргана.
- 3. Изучите работу и заполните таблицу истинности для устройства комбинационного типа.

4. Начертите функциональную схему по следующим логическим формулам:

a)
$$X = \underline{A*\overline{B}} + C$$

6) $X = (\underline{A+B}) + C$
B) $X = \overline{B} + \underline{A}$
T) $X = A + \overline{B} + C$
 $X = A*\overline{B*C} + A*C$
 $X = A*\overline{B*C} + A*C$

- 5. Постройте функциональную схему логических элементов «И», «ИЛИ», «НЕ», пользуясь набором элементов:
 - a) «И-НЕ»;
 - б) «ИЛИ-НЕ».

Задание 3. Проектирование комбинационных устройств.

Цель: освоить этапы проектирования цифровых автоматов комбинационного типа. Вопросы для самопроверки:

- Что такое комбинационные схемы (устройства)?
- Приведите примеры комбинационных устройств.
- Какие устройства относят к устройствам последовательностной логики?
- Перечислите основные законы и тождества алгебры логики.
- Назовите основные этапы проектирования цифровых автоматов комбинационного типа.
- Что такое «минимизация» логической формулы.
- Поясните выполнение задания.

Задания:

- 1. Запишите этапы проектирования цифрового автомата.
- 2. Изучите работу устройства и заполните таблицу истинности комбинационного типа.
- 3. Спроектируйте (до получения функциональной схемы) судейское устройство: на 3 судьи (один из них главный судья).
- 4. Составьте инструкционную карту по теме «Проектирование комбинационных операционных узлов с использованием программ для черчения электрических схем».

Вариант	Задача
1	Судейское устройство на 3 судьи (без главного судьи).
2	Судейское устройство на 4 судьи (с главным судьей).
3	Цифровой автомат для сравнения двух двоичных 3-разрядных чисел.
4	Цифровой автомат для сравнения двух двоичных 4-разрядных чисел.
5	Цифровой автомат для перевода единичного сигнала с клавиатуры (1, 2, 3, 4, 5, 6, 7, 8, 9, 0) в двоичный код.
6	Цифровой автомат для перевода двоичного 4-разрядного кода в единичный сигнал на один из 10 выходов (номера выходов 0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
7	Цифровой автомат для перевода двоичного 4-разрядного кода в единичный сигнал на один из 16 выходов (номера выходов 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f).
8	Устройство для арифметического сложения 3-х символов в двоичном коде.
9	Устройство для адресной передачи сигналов от 4 источников к одному приемнику информации.
10	Устройство для адресной передачи сигналов от одного источника к 4 приемникам информации.

Задание 4. Изучение принципов реализации интегральной технологии в цифровой электронике.

Цель: развитие понятия об интегральной технологии в электронике, видах интегральных схем и технологий производства, маркировкой и цоколевкой ИМС.

Вопросы для самопроверки:

- Какие вещества называют полупроводниками, примеры?

- Назовите полупроводниковые приборы и их принцип действия.
- Что такое диэлектрики и проводники, примеры.
- Что такое базовый логический элемент?
- Что такое многоэмиттерный транзистор?

Часть 1.

Составьте список источников – справочной литературы, баз данных по описанию ИМС отечественного и зарубежного производства (3 источника).

Пример:

Справочник по отечественным микросхемам / Справочник по микросхемам. Он-лайн справочники радиолюбителя. — URL: http://radio-uchebnik.ru/microbase/mikroskhemy-otechestvennye. — Режим доступа: в свободном доступе.

Часть 2.

Определите тип ИМС и дайте характеристику схемы каждой ИМС, входящей в состав лабораторного оборудования, по их маркировке. Результаты представьте в виде таблицы.

	Маркиров ка	Назначение	Серия	Функциональное назначение	
№				И3	из справочной
				лабораторного	литературы
				практикума	
1.	К133ЛА3	Микросхема	133	ЛА - логические	4 логических элемента
		общего		элементы И-НЕ	2И-НЕ. Содержат 56
		назначения			интегральных элементов.

Отчет: в электронном виде.

Задание 5. Ситуационная задача на изучение темы «Логические элементы».

Вариант	Задача				
1	На занятии по электронике обнаружилось, что практически вся группа имес				
	пробелы в знаниях об основных функциях алгебры логики и с трудом справляются в				
	понимании логических задач. Это может привести к тому, что обучающиеся не				
	освоят знания по практическому применению этой темы в электронике н				
	качественном уровне.				
	1) как в последующем избежать подобной ситуации?				
	2) каковы ваши действия на этом занятии?				
	3) предложите меры по устранению данной проблемы?				
2	На занятии по электронике обнаружилось, что примерно половина группы				
	имеет достаточные знания об основных функциях алгебры логики из школьного				
	курса математики и информатики и хорошо справляется с решением логических				
	задач. Однако вторая половина группы имеет существенные пробелы в этих знаниях.				
	Это может привести к тому, что половина обучающихся не освоят знания по				
	практическому применению этой темы в электронике на качественном уровне.				
	1) как в последующем избежать подобной ситуации?				
	2) каковы ваши действия на этом занятии?				
	3) предложите меры по устранению данной проблемы?				
3	На занятии по электронике обнаружилось, что отдельные обучающиеся (2-5				
	чел.) имеют существенные пробелы в знаниях об основных функциях алгебры				
1	логики и с трудом справляются в понимании логических задач. Это может привести				

Вариант	Задача
	к тому, что эти студенты не освоят знания по практическому применению этой темы
	в электронике на качественном уровне.
	1) как в последующем избежать подобной ситуации?
	2) каковы ваши действия на этом занятии?
	3) предложите меры по устранению данной проблемы?
4	На занятии по электронике обнаружилось, что практически вся группа имеет пробелы в знаниях о принципах действия полупроводниковых приборов. Из-за этого студенты, в частности, не понимают, как работают электрические схемы логических
	элементов. Эта тема является фундаментом для дальнейшего понимания работы цифровых устройств, поэтому данная ситуация может крайне отрицательно отразиться на формировании компетенций, связанных с использованием цифровых
	приборов в профессиональной деятельности.
	1) как в последующем избежать подобной ситуации?
	2) каковы ваши действия на этом занятии?
	3) предложите меры по устранению данной проблемы?
5	На занятии по электронике обнаружилось, что примерно половина группы имеет пробелы в знаниях о принципах действия полупроводниковых приборов. Из-за этого данные студенты, в частности, не понимают, как работают электрические
	схемы логических элементов. Эта тема является фундаментом для дальнейшего понимания работы цифровых устройств, поэтому такая ситуация может крайне
	отрицательно отразиться на формировании компетенций, связанных с
	использованием цифровых приборов в профессиональной деятельности.
	1) как в последующем избежать подобной ситуации?
	2) каковы ваши действия на этом занятии?
	3) предложите меры по устранению данной проблемы?
6	На занятии по электронике обнаружилось, что отдельные студенты в группе (2-
	5 чел.) имеют пробелы в знаниях о принципах действия полупроводниковых
	приборов. Из-за этого данные студенты, в частности, не понимают, как работают
	электрические схемы логических элементов. Эта тема является фундаментом для
	дальнейшего понимания работы цифровых устройств, поэтому такая ситуация может
	крайне отрицательно отразиться на формировании компетенций, связанных с
	использованием цифровых приборов в профессиональной деятельности.
	1) как в последующем избежать подобной ситуации?
	2) каковы ваши действия на этом занятии?
	3) предложите меры по устранению данной проблемы?
7	В группе наблюдается существенная разница по темпу освоения практического
	материала различными обучающимися. 20-30% справляются со всеми заданиями,
	предусмотренными вами, как преподавателем, для выполнения на занятии; 30-70% -
	выполняют больше половины заданий; остальные не справляются с большей частью
	заданий.
	Каковы ваши действия по повышению качества обучения в такой ситуации?
8	На занятии при изучении темы «Логические элементы» в группе наблюдается
	низкий уровень познавательного интереса и низкая учебная активность.
	Каковы ваши действия по повышению качества обучения в такой ситуации?
9	Во время изучения темы «Логические элементы» в группе по уважительным
	причинам отсутствуют несколько человек (по болезни, участвуют в выездном
	мероприятии и др.).
	Предложите меры по восполнению вынужденных пробелов в знаниях у
	обучающихся в такой ситуации?
10	Во время изучения темы «Логические элементы» в группе отсутствуют
1	1 7

Вариант	Задача				
	несколько человек по неуважительным причинам (это «хронические» прогульщики).				
	Предложите меры по повышению качества обучения в такой ситуации.				

Схема решения:

- 1. Проанализировать микросреду, в которой происходит действие, событие, явление.
- 2. Перевести факты, данные в задаче, на язык профессионально-педагогических категорий.
- 3. Выявить противоречие, источник развития анализируемого события, действия, явления. Определить характер, форму и направленность этого развития.
 - 5. Выдвинуть гипотезу в виде предполагаемого ответа или пути его поиска.
- 6. Установить, на основе каких педагогических воздействий достигаются цели и результаты обучения.
 - 9. Указать ошибки, допущенные в данной педагогической ситуации.
- 10. Назвать, какие формы, методы, средства педагогического воздействия можно было бы использовать в данной ситуации для получения положительного результата.
- 12. Сделать выводы и оценить задачу с точки зрения её типичности для профессионально-педагогической деятельности преподавателя СПО.

Задание 6. Проектирование функциональной схемы.

Используя таблицу истинности, постройте функциональную схему преобразователя двоично-десятичного кода в код семисегментного индикатора.

Задание 7. Проектирование функциональной схемы.

Начертите функциональную схему двоичного счетчика с коэффициентом счета $k=5,\,9,\,12.$

3.4. Экзамен

Экзамен представляет собой собеседование по билетам с 2 вопросами:

- теоретический вопрос,
- экспериментальный вопрос.

Теоретические вопросы

- 1. Цифровая электроника. Цифровые коды. Классификация цифровых автоматов. Функции алгебры логики.
- 2. Логические элементы НЕ, ИЛИ, И исключающее ИЛИ. Функции, таблицы состояний, условные обозначения и электронные схемы.
- 3. Логические элементы ИЛИ-НЕ, И-НЕ, исключающее ИЛИ. Функции, таблицы состояний, условные обозначения и электронные схемы. Базовый логический элемент. ТТЛ.
- 4. Шифраторы. Дешифраторы. Функциональные схемы. Индикаторы: газоразрядные, 7-сегментные, матричные, жидкокристаллические; устройство, схемы включения и принципы управления.
- 5. Мультиплексоры и демультиплексоры, функциональные схемы.
- 6. Полусумматор. Одноразрядный сумматор. Многоразрядный сумматор. Цифровой компаратор. Функциональные схемы, схемы включения и принципы управления.
- 7. RS триггер; D триггер; T триггер. Функциональные схемы, схемы включения и принципы управления. Делитель частоты на триггерах.

- 8. Параллельные и последовательные регистры на D триггерах. Регистры сдвига. Функциональные схемы, схемы включения и принципы управления.
- 9. Счетчик импульсов. Основные параметры. Синхронный и асинхронный 4разрядный счетчик. Функциональные схемы, схемы включения и принципы управления.
- 10. Понятие об интегральной электронике, микроэлектроника. Интегральные микросхемы: классификации. Серии. Маркировка. Цоколевка. Типы корпусов.
- 11. Планарная технология производства активных и пассивных элементов полупроводниковых, пленочных и гибридных микросхем. Представление о наноэлектронике.
- 12. Понятие о микропроцессоре и микроконтроллере. Типовая структура микропроцессора и микроконтроллера. Назначение блоков. Области применения. Шинная организация коммутации сигналов.
- 13. Схемы ОЗУ и ПЗУ.
- 14. Арифметико-логические устройства. Схема включения и принципы управления 4-разрядным АЛУ на микросхеме К155ИП3.
- 15. Цифро-аналоговые преобразователи. Устройство и принцип действия.
- 16. Аналогово-цифровые преобразователи. Устройство и принцип действия.

Экспериментальные вопросы

- 1. Проверьте работу логического элемента И-НЕ, начертите временны).
- 2. Проверьте работу логического элемента ИЛИ-НЕ, начертите временные диаграммы.
- 3. Проверьте работу логического элемента 2И, начертите временные.
- 4. Проверьте работу логического элемента 2ИЛИ, начертите временные диаграммы.
- 5. Проверьте работу логического элемента исключающее ИЛИ, начертите временные диаграммы.
- 6. Проверьте работу мультиплексора, начертите временные диаграммы.
- 7. Проверьте работу дешифратора, начертите временные диаграммы.
- 8. Проверьте работу сумматора, начертите временные диаграммы.
- 9. Проверьте работу компаратора, начертите временные диаграммы.
- 10. Проверьте работу RS-триггера, начертите временные диаграммы.
- 11. Проверьте работу D-триггера, начертите временные диаграммы.
- 12. Проверьте работу ЈК-триггера, начертите временные диаграммы.
- 13. Проверьте работу регистра сдвига, начертите временные диаграммы.
- 14. Проверьте работу счетчика, начертите временные диаграммы.
- 15. Проверьте работу ОЗУ.
- 16. С помощью АЛУ найдите результат следующих действий над числами A и B: сумма, разность, отрицание дизъюнкции, конъюнкция, исключающее ИЛИ, отрицание A; результат представьте в виде таблицы.