Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Романчук Иван Сергеевич МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ Должность: Ректор РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 23.11.2022 17:37:24
Уникальный программный ключ: РОССИИСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ: РОССИИСКОЙ ФЕДЕРАЦИИ высшего образования e68634da050325a9234284dd96b4f0f8b288e139

«TIOMEHCKИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Тобольский педагогический институт им. Д.И. Менделеева (филиал) Тюменского государственного университета

УТВЕРЖДЕНО Заместителем директора филиала Шитиковым П.М. РАЗРАБОТЧИК Ахундова И.Т.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ЕН 03. «Компьютерное моделирование»

для обучающихся по программе подготовки специалистов среднего звена 15.02.10 Мехатроника и мобильная робототехника (по отраслям) Форма обучения – очная

Ахундова И.Т. ЕН03. «Компьютерное моделирование». Фонд оценочных средств дисциплины для обучающихся по программе подготовки специалистов среднего звена 15.02.10 Мехатроника и мобильная робототехника (по отраслям). Форма обучения — очная. Тобольск, 2022.

Рабочая программа дисциплины разработана на основе ФГОС СПО по специальности 15.02.10 Мехатроника и мобильная робототехника (по отраслям), утвержденного приказом Министерства образования и науки Российской Федерации 09 декабря 2016 года, № 1550, на основе примерной основной образовательной программы, регистрационный номер в реестре 170828 от 17 апреля 2017 года.

[©] Тобольский педагогический институт им. Д.И. Менделеева (филиал) Тюменского государственного университета, 2022

[©] Ахундова И.Т., 2022

Содержание

1.	Общая характеристика фонда оценочных средств	3
2.	Паспорт фонда оценочных средств	4
3.	Типовые задания для оценки освоения учебной дисциплины	5

1. ОБЩАЯ ХАРАКТЕРИСТИКА ФОНДОВ ОЦЕНОЧНЫХ СРЕДСТВ

1.1. Область применения программы

Фонд оценочных средств учебной дисциплины «Компьютерное моделирование» является частью программы подготовки специалистов среднего звена в соответствии с ФГОС СПО по специальности по специальности 15.02.10 Мехатроника и мобильная робототехника (по отраслям).

Фонд оценочных средств предназначен для проверки результатов освоения учебной дисциплины «Компьютерное моделирование» и может быть использован в профессиональной подготовке студентов по квалификации – техник-мехатроник.

- 1.2. Место дисциплины в структуре программы подготовки специалистов среднего звена Дисциплина «Компьютерное моделирование», входит в математический и общий естественнонаучный учебный цикл.
- 1.3. Цели и задачи дисциплины требования к результатам освоения дисциплины. В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:
- ОК 9. Использовать информационные технологии в профессиональной деятельности.
- ПК 3.2. Моделировать работу простых мехатронных узлов.

Код ПК, ОК	Умения	Знания
ОК 09	У1. Строить математические	31. Основные понятия и определения
ПК 3.2	модели различных явлений и	математического, имитационного и
	процессов мехатронных систем на	компьютерного моделирования.
	основе фундаментальных законов	32. Методы моделирования
	природы, вариационных	простейших мехатронных узлов.
	принципов.	33. Методику моделирования
	У2. Проводить вычислительный	случайных величин, метод
	эксперимент и оценивать	статистических испытаний.
	результаты.	34. Модели решения функциональных
	У3. Моделировать 2d и 3d	и вычислительных задач мехатронных
	компьютерные модели.	систем.
	У4. Выбирать, строить и	35. Особенности программного
	анализировать математические и	обеспечения и технологии
	компьютерные модели в в	программирования в моделировании.
	мехатронных системах.	36. Основные понятия и методы
	У5. Моделировать простейшие	геометрического моделирования и
	мехатронные узлы.	компьютерную графику.
		37. Методы моделирования в
		различных областях науки.

2.ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

п/п	Темы дисциплины, МДК, разделы (этапы) практики, в ходе текущего контроля, вид промежуточной аттестации с указанием семестра	Код контролируемой компетенции (или её части), знаний, умений	Наименование оценочного средства (с указанием количество вариантов, заданий и т.п.)
1.	Тема 1. Общие понятия теории моделирования.	У1, 31, 32, ОК 09, ПК 3.2	Тест (15 вопросов).
2.	Тема 2. Математическое моделирование	У1, 31, 32, 34, ОК 09, ПК 3.2	Устный опрос (10 вопросов).
3.	Тема 3. Компьютерное моделирование	У1, У2, 33, 34, ОК 09, ПК 3.2	Контрольная работа (3 варианта)
4.	Тема 4. Моделирование случайных процессов.	У2, 33, 34, ОК 09, ПК 3.2	Устный опрос (6 вопросов) Тест (10 вопросов)
5.	Тема 5. Моделирование простейших мехатронных узлов	У2, У3, 32, 34, ОК 09, ПК 3.2	Тест (10 вопросов) Индивидуальная самостоятельная творческая работа (10 тем)
6.	Тема 6. Геометрическое моделирование и компьютерная графика.	У3, 36, ОК 09, ПК 3.2	Тест (11 вопросов) Устный опрос (5 вопросов)
7.	Тема 7. Применение методов моделирование в различных областях науки.	У4, У5, 32, 37, ОК 09, ПК 3.2	Сообщения (10 тем)
8.	Тема 8 Пакеты визуального компьютерного моделирования мехатронных систем.	У4, У5, 32, 34, 35, ОК 09, ПК 3.2	Устный опрос (10 вопросов)
9.	Промежуточная аттестация в 7 семестре	У1-У5, 31- 37, ОК 09, ПК 3.2	Экзамен (30 вопросов)

3. ТИПОВЫЕ ЗАДАНИЯ ДЛЯ ОЦЕНКИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Тема 1. Общие понятия теории моделирования.

У1, 31, 32, ОК 09, ПК 3.2

Тест:

- 1. Модель это:
 - а) замещение (оригинала) объекта другим (копией);
 - б) копия объекта;
 - в) описание объекта;
 - г) чертеж объекта.
- 2. Объектом не может быть:
 - а) естественная система;
 - б) искусственная система;
 - в) воображаемая система;
 - г) эмоциональная система.
- 3. Параметры модели и их значения отражают:
 - а) контекст модели;
 - б) тип модели;
 - в) структуру и принципы функционирования;
 - г) отношения между человеком и моделью.
- 4. Характеристики модели это:
 - а) внешние признаки;
 - б) внутренние признаки;
 - в) приписанные признаки;
 - г) временные признаки.
- 5. Математическая модель представляет собой:
 - а) математическое выражение;
- б) формализованное представление системы с помощью математических соотношений, отражающих процесс функционирования системы;
 - в) математический аппарат;
 - г) математическую логику.
- 6. При построении математической модели нельзя использовать:
 - а) дифференциальное исчисление;
 - б) алгебру;
 - в) теорию алгоритмов;
 - г) тезис Черча.
- 7. Математические модели характеризуются:
 - а) вероятностные, аналитические, численные и имитационные;
 - б) детерминированные и вероятностные, аналитические, численные;
 - в) аналитические, численные и имитационные;
 - г) детерминированные и вероятностные, аналитические, численные и имитационные.
- 8. Имитационное моделирование это:
 - а) модель анализируется на компьютере;
 - б) относится к численным методам;
 - в) замена реального объекта множеством алгоритмов;
 - г) анализируемая динамическая система заменяется имитатором и с ним
 - производятся эксперименты для получения сведений об изучаемой системе.
- 9. Для реализации модели используются языки:
 - а) языки моделирования;
 - б) языки моделирования и языки программирования;
 - в) языки программирования;
 - г) естественные языки.
- 10. Компоненты конечного автомата:

- а) входные сигналы, множество состояний, множество правил переходов, множество выходных сигналов;
 - б) множество состояний, множество правил переходов;
 - в) входные сигналы, множество правил переходов;
 - г) множество состояний, множество правил переходов, множество выходных сигналов.
- 11. Система массового обслуживания это:
 - а) динамическая система, предназначенная для разрешения конфликтов;
 - б) случайное отображение множества входных сигналов в выходные;
 - в) система, преобразующая входные сигналы при помощи, правил переходов;
- г) динамическая система, предназначенная для эффективного обслуживания случайного потока заявок при ограниченных ресурсах.
- 12. Системы массового обслуживания моделируются с помощью моделей:
 - а) аналитический;
 - б) имитационных;
 - в) аналитических и имитационных;
 - г) вероятностных.
- 13. Не относится к языкам моделирования следующий язык:
 - a) SIMULA;
 - б) SIMSCRIPT;
 - в) GPSS;
 - г) LISP.
- 14. Аналитические модели применимы:
 - а) к любым системам;
 - б) только к узкому кругу систем;
 - в) только к системам определенного типа;
 - г) не применимы вообще.
- 15. Более простыми являются модели:
 - а) линейные;
 - б) имитационные;
 - в) нелинейные;
 - г) вероятностные.

Тема 2. Математическое моделирование	У1, 31, 32, 34, ОК 09, ПК
	3.2

Вопросы для устного опроса:

- 1. Что такое модель? Для чего необходимы модели? Структура модели. Примеры.
- 2. Моделирование. Принципы моделирования.
- 3. Формальное объяснение понятия модели.
- 4. Различные подходы к классификации моделей.
- 5. Укрупнённая классификация абстрактных моделей.
- 6. Что такое математическое моделирование? Определение математической модели.
- 7. Классификация математических моделей.
- 8. Охарактеризуйте основные этапы математического моделирования.
- 9. Приведите примеры построения математических моделей.
- 10. Численные методы в математическом моделировании.

Тема 3. Компьютерное моделирование	У1, У2, 33, 34, ОК 09, ПК
	3.2

Требования к выполнению контрольной работы:

- 1. Ответить на теоретический вопрос (письменно);
- 2. Построить математическую модель исследуемой фигуры;
- 3. Построить геометрическую модель исследуемой фигуры;

- 4. Описать математическую модель метода;
- 5. Разработать алгоритмическую модель решения задачи;
- 6. Реализовать разработанный алгоритм на одном из языков программирования;
- 7. Провести статистические испытания для n=100, 500, 5000,10000. Количество прогонов k=3.
- 8. Определить дисперсию метода для каждого п.
- 9. Результаты свести в таблицу.
- 10. Провести анализ результатов

Вариант 1

- 1. Понятие модели. Виды моделей.
- 2. Из всех цилиндров, имеющих объем V м³, найти цилиндр (цилиндр описывается радиусом и высотой) с наименьшей площадью полной поверхности. Найдите эту площадь.
- 3. Найти площадь фигуры методом Монте-Карло. Фигура ограниченна линиями: прямая y=2, парабола $y=x^2$, x=0.

Вариант 2

- 1. Понятие математической модели. Классификация математических моделей.
- 2. Сумма длин катетов прямоугольника равна а см. Какой длины должны быть катеты, что-бы площадь треугольника была наибольшей. Найти эту площадь.
- 3. Найти площадь фигуры методом Монте-Карло. Фигура ограниченна линиями: прямая y=2x, x=0, кривая $y=\cos(x)$

Вариант 3

- 1. Понятие вычислительного эксперимента. Этапы вычислительного эксперимента.
- 2. Найти высоту цилиндра наибольшего объема, который можно вписать в шар с радиусом R. Найдите наибольший объем.
- 3. Найти площадь фигуры методом Монте-Карло. Фигура ограниченна линиями: прямая y=x, окружность $r=3,\ y=0$

Тема 4. Моделирование случайных процессов.

У2, 33, 34, ОК 09, ПК 3.2

Вопросы для устного опроса:

- 1. Понятие случайной величины. Определение случайного числа. Историческая необходимость создания функций случайного числа. Области применения.
- 2. Определение случайного числа. Понятие псевдослучайности.
- 3. Формирование случайного числа по принципу фон Неймана.
- 4. Метод Энгеля.
- 5. Другие примеры функций случайного числа.
- 6. Задачи, решаемые с использованием функции случайного числа.

Тест

- 1. Компьютерное моделирование это:
 - 1) процесс построения модели компьютерными средствами;
 - 2) процесс исследования объекта с помощью его компьютерной модели;
 - 3) построение модели на экране компьютера;
 - 4) решение конкретной задачи с помощью компьютера.
- 2. Компьютерный эксперимент это:
 - 1) решение задачи на компьютере;
 - 2) исследование модели с помощью компьютерной программы;
 - 3) подключение компьютера для обработки физических экспериментов;
 - 4) автоматизированное управление физическим экспериментом.
- 3. В модели «очередь» случайный процесс формирования очереди является:
 - 1) марковским;
 - 2) немарковским;
 - 3) линейным;
 - 4) квазистационарным.

- 4. Методом случайных испытаний (метод Монте-Карло) невозможно вычислить:
 - 1) число пи;
 - 2) площадь;
 - 3) числа Фибоначчи;
 - 4) корень уравнения.
- 5. С помощью имитационной модели случайного блуждания точек невозможно изучать:
 - 1) законы идеального газа;
 - 2) броуновское движение;
 - 3) законы кинематики;
 - 4) тепловые процессы.
- 6. Метод середины квадрата это формирование случайных чисел методом....
 - 1) Неймана;
 - Энгеля;
 - 3) Монте-Карло;
 - 4) Архенгельского.
- 7. Что такое случайная величина?
 - 1) величина, которая формируется по определенному заданному условию;
 - 2) значение, полученное с помощью функции
 - 3) величина, которая достоверно непредсказуемая;
 - 4) величина, которая принимает различные числовые значения в зависимости от случая.
- 8. Какие виды случайной величины существуют?
 - 1) монотонно возрастающие, монотонно убывающие;
 - 2) дискретные, непрерывные;
 - 3) конечные, бесконечные;
 - 4) непрерывные, конечные.
- 9. Каким свойством не обладает функция распределения произвольной случайной величины
 - 1) $\lim F(x)=1, \lim F(x)=0$
 - 2) F(х) непрерывна слева
 - 3) F(х) монотонно убывает
 - 4) Г(х) монотонно возрастает
- 10. Кто ввел понятие вычислительного эксперимента?
 - 1) Келдыш М. В.;
 - 2) Ляпунов А.А;
 - 3) Самарский А.А.;
 - 4) Гейн А.Г.

Тема 5. Моделирование простейших мехатронных узлов	У2, У3, З3, З4, ОК 09, ПК
	3.2

Тест

- 1. Принятие решений о движении механической системы в условиях неполной информации о внешней среде и объектах работ это
 - 1) Тактический уровень
 - 2) Стратегический уровень
 - 3) Интеллектуальный уровень
- 2. Тактический уровень
 - 1) выполняет преобразование команд управления движением, поступающих со стратегического уровня управления, в программу управления, которая определяет законы согласованного движения во времени всех звеньев механического устройства с учетом технических характеристик блока приводов
 - 2) выдает информацию о плане движения и целях управления в форме команд управления движением

- 3) принимает решения о движении механической системы в условиях неполной информации о внешней среде и объектах работ
- 3. К детерминированным относятся среды ...
 - 1) которые содержат различное основное и вспомогательное оборудование, технологическую оснастку и объекты работ
 - 2) для которых параметры возмущающих воздействий и характеристики объектов работ могут быть заранее определены с необходимой для проектирования МС степенью адекватности
 - 3) у которых не все параметры известны заранее
- 4. Задача мехатроники состоит в ...
 - 1) перенос функциональной нагрузки от механических узлов к интеллектуальным компонентам
 - 2) глубокой взаимосвязи механических, электронных и компьютерных элементов
 - 3) интеграции знаний из обособленных областей, как механика и компьютерное управление, информационные технологии и микроэлектроника
- 5. Мехатронная система это
 - 1) предмет (изделие), представляющий собой машину с компьютерным управлением, самостоятельно функционирующую в соответствии с целевым назначением
 - 2) множество механических, процессор¬ных, электронных и электротехнических компонентов, находящихся в связях друг с другом
 - 3) мехатронное устройство, состоящее из интегрированного сочетания нескольких элементов, оформленное конструктивно как самостоятельное изделие и выполняющее определенную функцию
- 6. Мехатронный узел (устройство), состоящее из интегрированного сочетания нескольких элементов, оформленный конструктивно как самостоятельное изделие и выполняющий определенную функцию это
 - 1) Мехатронный модуль
 - 2) Мехатронный объект
 - 3) Мехатронный комплекс
- 7. Назначение мехатронных модулей?
 - 1) технология, которая объединяет механику с электронными и информационными технологиями
 - 2) системное сочетание естественно-научных и инженерных направлений
 - 3) функциональные элементы, из которых можно компоновать сложные многокоординатные системы
- 8. Исполнительный орган это
 - 1) множество механических, процессорных, электронных и электротехнических компонентов, находящихся в связях друг с другом, образующих определенную целостность
 - 2) мехатронный узел (устройство), состоящее из интегрированного сочетания нескольких элементов, оформленный конструктивно как самостоятельное изделие и выполняющий определенную функцию в различных мехатронных объектах
 - 3) функциональная часть мехатронного устройства, предназначенная для выполнения действий по сигналам от системы управления
- 9. Уровни управления:
 - 1) интеллектуальный, стратегический, тактический, исполнительный
 - 2) механический, электрический, пневматический, гидравлический
 - 3) инженерный, электронный, механический
- 10. Какова правильная полярность подключения светодиода?
 - 1) длинная ножка (анод) к «минусу» питания, короткая ножка (катод) к «плюсу»
 - 2) длинная ножка (катод) к «плюсу» питания, короткая ножка (анод) к «минусу»
 - 3) длинная ножка (анод) к «плюсу» питания, короткая ножка (катод) к «минусу»

Самостоятельно придумать электронную схему, проект, робота, мехатронную систему, построить модель и реализовать на платформе Arduino в Autodesk CIRCUITS.

Отчет по выполнению самостоятельной творческой работы включает:

- 1. Вводную часть (условие задачи или тема проекта, цель работы, информационно-теоретический блок, перечень оборудования);
- 2. Содержание хода работы и последовательность действий;
- 3. Программный код;
- 4. Фотографию, видео или скрин готового проекта или решения задачи;
- 5. Заключительная часть (выводы).

Примеры тем для самостоятельной работы:

- 1. Умный дом
- 2. Светомузыка
- 3. Лазерный или инфракрасный замок
- 4. Эквалайзер
- 5. Мигающая подсветка в такт музыке
- 6. Светофор на перекрестке
- 7. Умные internet вещи
- 8. Рекламный led-экран
- 9. Кодовый замок
- 10. Аудиоплеер

Тема 6. Геометрическое моделирование и компьютерная графика. У3, 36, ОК 09, ПК 3.2

Вопросы для устного опроса:

- 1. Понятие аналитической и координатной модели.
- 2. Моделирование графиков функций.
- 3. Моделирование фигур вращения.
- 4. Моделирование художественной графики.
- 5. Моделирование орнаментов.
- 1. Перечислите методы геометрического моделирования
 - 1) координатный
 - 2) аналитический
 - 3) графический
 - 4) графический, с использованием средств машинной графики
 - 5) графоаналитические методы
- 2. Что включает геометрическая модель в себя (выберите несколько вариантов):
 - 1) системы уравнений
 - 2) чертежи
 - 3) алгоритмы их реализации
 - 4) геометрические примитивы
- 3. Что является основными параметрами в 3D моделировании?
 - 1) долгота, ширина, глубина;
 - 2) длина, ширина, глубина;
 - 3) глубина, высота и ширина;
 - 4) объем.
- 4. Все 3D редакторы условно можно разделить на:
 - 1) твердотельные и сплошные;
 - 2) векторные и фрактальные;
 - 3) модульные и блочные;
 - 4) сплошные и поверхностные
- 5. Что является основными параметрами в 2D моделировании?
 - 1) высота и ширина;
 - 2) длина и ширина;

- 3) глубина и высота;
- 4) объем фигуры.
- 6. OpenSCAD предоставляет два основных метода моделирования. Выберите какие.
 - 1) конструктивная сплошная геометрия и экструзия двухмерных контуров;
 - 2) объединение геометрических объектов и шаблонное конструирование;
 - 3) объединение геометрических объектов и экструзия двухмерных контуров;
 - 4) 2D- и 3D- моделирование.
- 7. Что обозначает команда «union» в OpenScad?
 - 1) пересечение объектов;
 - 2) объединение объектов;
 - 3) разность объектов;
 - 4) объем объектов.
- 8. Что обозначает команда «intersection» в OpenScad?
 - 1) пересечение объектов;
 - 2) объединение объектов;
 - 3) разность объектов;
 - 4) объем объектов.
- 9. Какое изображение соответствует команде surface(invert = true) в OpenScad?

- 10. Какая команда создает линейную экструзию?
 - 1) extrude line;
 - 2) rotate extrude;
 - 3) linear extrude;
 - 4) extrude_translate.
- 11. Выберите какие типы 3D-геометрических моделей существуют?
 - 1) каркасная 3D-модель
 - 2) поверхностная 3D-модель
 - 3) твердотельная модель 3D-модель
 - 4) объемные примитивы

Тема 7. Применение методов моделирование в различных областях	У4, 37, ОК 09, ПК 3.2
науки.	

Темы сообщений:

Компьютерное моделирование в различных областях:

- 1. В биологии
- 2. В астрономии
- 3. В физике
- 4. В химии
- 5. В медицине
- 6. В инженерии
- 7. В теории игр
- 8. В геоинформационных системах
- 9. В мехатронике
- 10. В робототехнике

Выбрать область применения компьютерного моделирования и составить презентацию по соответствующей теме (основные понятия, классификацию, примеры).

Тема 8 Пакеты визуального компьютерного моделирования	У4, 34, 35, ОК 09, ПК 3.2
мехатронных систем.	

- 1. Программные средства разработки, моделирования и исследования.
- 2. Интерфейсы и основные возможности программных пакетов.
- 3. Приемы работы с программными пакетами (по видам).
- 4. Функциональные возможности и основные принципы работы в МАТНСАD. Примеры построения компьютерных моделей.
- 5. Функциональные возможности и основные принципы работы в AutoCAD. Примеры построения компьютерных моделей.
- 6. Функциональные возможности и основные принципы работы в OpenCAD. Примеры построения компьютерных моделей.
- 7. Функциональные возможности и основные принципы работы в Компас. Примеры построения компьютерных моделей.
- 8. Функциональные возможности и основные принципы работы в Tinkercad. Примеры построения компьютерных моделей.
- 9. Функциональные возможности и основные принципы работы в Blender. Примеры построения компьютерных моделей.
- 10. Программы для моделирования дополненной и виртуальной реальности.

Промежуточная аттестация

У1-У5, 31- 37, ОК 09, ПК 3.2

Вопросы для экзамена:

- 1. Концепция компьютерного моделирования.
- 2. Основные этапы моделирования. Пример.
- 3. Классификация моделей. Разные подходы к классификации моделей. Примеры.
- 4. История развития понятия модели. Определение модели. Классификация моделей.
- 5. Определение модели. Основные характеристики модели. Примеры.
- 6. Математическое моделирование. Этапы построения математической модели. Пример построения математической модели.
- 7. Вычислительный эксперимент. Основные этапы вычислительного эксперимента. Пример.
- 8. Статистические методы вычислительного эксперимента. Метод Монте-Карло в моделировании. Примеры.
- 9. Понятие случайной величины. Нормальное распределение случайной величины. Мультипликативный метод.
- 10. Случайные числа. Формирование случайного числа по методу фон Неймана. Другие способы формирования случайного числа. Пример
- 11. Метод Энгеля. Случайные числа и задачи, решаемые с помощью функций случайного числа. Пример
- 12. Компьютерное моделирование. Этапы компьютерного моделирования. Пример.
- 13. Информационное и имитационное моделирование.
- 14. Компьютерное моделирование в исследовании операций. Основные этапы. Пример.
- 15. Геометрическое моделирование. Примеры построения геометрических моделей.
- 16. Моделирование 2d и 3d компьютерных моделей. Примеры.
- 17. Примеры математических моделей в различных областях научной деятельности: в биологии.
- 18. Примеры математических моделей в различных областях научной деятельности: в физике.
- 19. Примеры математических моделей в различных областях научной деятельности: в экономике.
- 20. Программные средства для моделирования динамических систем. Пример
- 21. Аналитическое моделирование. Метод графов связей.
- 22. Алгоритмы численного моделирования нелинейных динамических систем.

- 23. Моделирование гибридных (событийно-управляемых) мехатронных систем.
- 24. Программные средства реализации моделей. Примеры.
- 25. Основные этапы разработки и исследования моделей на компьютере
- 26. Компьютерная векторная геометрическая модель
- 27. Моделирование в среде программирования Scratch.
- 28. Оптимизация и оптимизационное моделирование. Примеры.
- 29. Моделирование мехатронных узлов на Arduino в среде Circuit.
- 30. Программное обеспечение для компьютерного моделирования: обзор, классификация, основные характеристики и принципы работы.

Экзамен в формате онлайн теста, ссылка: https://onlinetestpad.com/hnmvc7efc4kee