# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Тобольский педагогический институт им. Д.И. Менделеева (филиал) Тюменского государственного университета

# ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

#### ОСНОВЫ РОБОТОТЕХНИКИ

44.03.05 – Педагогическое образование (с двумя профилями подготовки) Профиль: начальное образование; робототехника Форма обучения:заочная

1. Паспорт оценочных материалов по дисциплине

|                     | спорт оценочных материалов п                     |                           |                            |
|---------------------|--------------------------------------------------|---------------------------|----------------------------|
| $N_{\underline{0}}$ | Темы дисциплины в ходе                           | Код компетенции           | Наименование оценочного    |
| $\Pi/\Pi$           | текущего контроля, вид                           | (или ее части)            | средства (количество       |
|                     | промежуточной аттестации                         |                           | вариантов, заданий и т.п.) |
| 1.                  | История развития                                 |                           | Задания к самостоятельной  |
|                     | робототехники. Потенциал                         |                           | работе.                    |
|                     | образовательной                                  |                           | Тест.                      |
|                     | робототехники                                    |                           | Практические работы.       |
|                     |                                                  |                           | Вопросы экзамена           |
| 2.                  |                                                  |                           | Задания к самостоятельной  |
|                     | Технологии программирования                      |                           | работе.                    |
|                     | роботов                                          | ПК-4 способность          | Тест.                      |
|                     | рооотов                                          | использовать возможности  | Практические работы.       |
|                     |                                                  | образовательной среды для | Вопросы экзамена           |
| 3.                  |                                                  | достижения личностных,    | Задания к самостоятельной  |
|                     | Технические основы и реализация движения роботов | метапредметных и          | работе.                    |
|                     |                                                  | предметных результатов    | Тест.                      |
|                     |                                                  | обучения и обеспечения    | Практические работы.       |
|                     |                                                  | качества учебно-          | Вопросы экзамена           |
| 4.                  | Реализация систем обратной                       | воспитательного процесса  | Задания к самостоятельной  |
|                     | связи                                            | средствами преподаваемых  | работе.                    |
|                     |                                                  | учебных предметов         | Тест.                      |
|                     |                                                  |                           | Практические работы.       |
|                     |                                                  |                           | Вопросы экзамена           |
| 5.                  |                                                  |                           | Задания к самостоятельной  |
|                     | Конкурсные мероприятия для                       |                           | работе.                    |
|                     | школьников и подготовка к                        |                           | Тест.                      |
|                     | ним                                              |                           | Практические работы.       |
|                     |                                                  |                           | Вопросы экзамена           |
|                     |                                                  |                           | Собеседование по вопросам  |
|                     | Экзамен                                          |                           |                            |
|                     |                                                  |                           |                            |
|                     |                                                  |                           |                            |

# 2. Виды и характеристика оценочных средств

Текущий контроль осуществляется проверкой наличия конспектов лекций, выполнения заданий в ходе практическихработ, самостоятельной работы.

#### 2.1. Практические работы

Практические работыиспользуются для формирования практико-ориентированных знаний, оценки умений по отдельным темам дисциплины. Выполнение работ включает в себя 3 этапа:

- 1) *Изучение/повторение необходимой теории* проходит в виде интерактивной беседы, рассказа, объяснениядля понимания и уяснения студентами теоретической информации по данной теме, необходимой для эффективного выполнения практических заданий
- 2) **Выполнение практических заданий** во времязанятий и самостоятельной работы студентов.
- 3) Защита выполненных заданий проводится в виде демонстрации конструкции механизма или модели учебного робота, в виде представления и защиты дидактических и учебно-методических проекта.

Оценка объявляется непосредственно после демонстрации решения. Хорошо выполненные задания могут быть зачтены как практическая часть экзаменационного билета

Критерии оценивания учебно-исследовательского проекта

- 1. Наличие методологии исследования.
- 2. Указание перечня необходимого оборудования
- 3. Наличие плана исследования
- 4. Описание исследования (подбор доказательных материалов: видеоролики, фото, текст, презентация) в формате постера/презентации и т.д.
- 5. Инструкции по сборке и программированию роботовв формате инженерной книги/инженерного листа и т.д.
- 6. Наличие работоспособной модели
- 7. Работа модели

#### 2.2. Тестовые задания

#### Критерии оценивания текстовых заданий

При составлении/подборе тестовых заданий заранее проектируется необходимый уровень сложности теста. Сложность теста определяется пятью уровнями:

- 2. Репродуктивный, основными операциями которого являются воспроизведение информации и ее преобразования алгоритмического характера.
- 3. Базовый, требующий от испытуемого понимания существенных сторон учебной информации, владения общими принципами поиска алгоритмов.
- 4. Повышенный, уровень сложности задания, требующий от испытуемого умения преобразовывать алгоритмы к условиям, отличающимся от стандартных, умение вести эвристический поиск.
- 5. Творческий, предполагающий наличие самостоятельного, критического оценивания учебной информации, умение решать нестандартные задания, владение элементами исследовательской деятельности.

Каждому из заданий в соответствии с его сложностью приписывается определенное число, например: информационного характера - 1; репродуктивного - 1,5; базового уровня - 2; повышенной сложности - 2,5; творческого – 3 (или другое количество баллов). Таким образом, получается измерительное устройство в виде шкалы, достаточно понятной и наглядной, которую можно предлагать ученикам или использовать при выставлении баллов за работу над тестом.

Измерительная шкала

| Задание | Информационно | Репродуктивно | Базовое | Повышенного уровня | Творческое |  |
|---------|---------------|---------------|---------|--------------------|------------|--|
|         | e             | e             |         |                    |            |  |
| Балл    | 1             | 1,5           | 2       | 2,5                | 3          |  |

Сложность теста определяется как среднее арифметическое сложностей всех заданий,

$$CT = \frac{\sum_{i=1}^{n} C3_i}{C}$$

входящих в рассматриваемый тест: i-го задания теста; n - число заданий в тесте.

 $CT = \frac{\sum_{i=1}^{n} C3_i}{n}$  , где CT - сложность теста;  $C3_i$  - сложность

Для определения, каким будет тест по вычисленной сложности, следует воспользоваться специальной таблицей:

Определение вида теста по его сложности

| Тест | Информативный | Репродуктивны | Базовый | Повышенной сложности | Творчески |  |  |  |  |
|------|---------------|---------------|---------|----------------------|-----------|--|--|--|--|
|      | (ТИ)          | й (ТР)        | (ТБ)    | (TΠ)                 | й         |  |  |  |  |
|      |               |               |         |                      | (TT)      |  |  |  |  |
| CT   | 1 - 1,3       | 1,4 – 1,6     | 1,7-2,1 | 2,2-2,4              | > 2.5     |  |  |  |  |

Результаты выполнения различных тестов следует оценивать в зависимости от их сложности, при помощи специальной нормировочной таблицы:

Опенка результатов выполнения тестов различной сложности

| o Bonka posynbiatob bbinomienimi reetob pasini men enomicetn |            |                 |             |             |           |            |                 |    |    |     |   |
|--------------------------------------------------------------|------------|-----------------|-------------|-------------|-----------|------------|-----------------|----|----|-----|---|
| CT%                                                          | 100        | 90              | 80          | 70          | 60        | 50         | 40              | 30 | 20 | 10  | 0 |
| TP                                                           | <b>«</b> 5 | <b>&gt;&gt;</b> | <b>~</b> /4 | <b>4</b> >> | <b>«3</b> | 3»         | <b>«</b> 2      | 2» |    | «1» |   |
| ТБ «5»                                                       |            | «4» «3          |             | 3» «2»      |           | <b>«</b> 1 | <b>&gt;&gt;</b> |    |    |     |   |

| ТΠ  | <b>45</b> % | <i>u</i> 4\\                            | <i>(</i> (3)) | <i>(</i> (2))   |
|-----|-------------|-----------------------------------------|---------------|-----------------|
| 111 | ((3))       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ((3))         | \\\ <u>~</u> // |

## 2.4. Критерии оценивания презентации

Презентация— форма представления информации из одного или нескольких источников, как с помощью разнообразных технических средств, так и без них. При разработке электронной презентации необходимо придерживаться следующих этапов:

- 1. Подготовка и согласование с преподавателем текста доклада.
- 2. Разработка структуры компьютерной презентации. Учащийся составляет варианты сценария представления результатов собственной деятельности и выбирает наиболее подходящий.
  - 3. Создание выбранного варианта презентации в Power Point.
  - 4. Согласование презентации и репетиция доклада.

При разработке электронной презентации необходимо придерживаться следующих правил:

- Компьютерная презентация должна содержать начальный и конечный слайды; структура компьютерной презентации должна включать оглавление, основную и резюмирующую части; каждый слайд должен быть логически связан с предыдущим и последующим; слайды должны содержать минимум текста (на каждом не более 10 строк);
- Необходимо использовать графический материал (включая картинки), сопровождающий текст (это позволит разнообразить представляемый материал и обогатить доклад выступающего студента);
- Компьютерная презентация может сопровождаться анимацией, что позволит повысить эффект от представления доклада (но акцент только на анимацию недопустим, т.к. злоупотребление им на слайдах может привести к потере зрительного и смыслового контакта со слушателями);
- Время выступления должно быть соотнесено с количеством слайдов из расчета, что компьютерная презентация, включающая 10— 15 слайдов, требует для выступления около 7—10 минут.
- После выступления докладчик должен оперативно и по существу отвечать на все вопросы аудитории
- Оцениванию подвергаются все этапы презентации содержание и оформление презентации, доклад и ответы на вопросы аудитории; умение анализировать социально и личностно значимые проблемы; применять знания в процессе решения задач образовательной деятельности.

## 2.5. Процедура и оценочные средства для проведения промежуточной аттестации

Промежуточная аттестация – экзамен - представляет собой устный ответ по вопросам с демонстрацией практических приемов работы с учебными моделями роботов.

Критерии выставления оценки за экзамен при устном ответе

Оценка «отлично»:

- Результаты освоения программы дисциплины соответствуют повышенному уровню в соответствии с установленными критериями
- Свободно отвечает на дополнительные вопросы.
- Практическое задание выполнено правильно

#### Оценка «хорошо»:

- Результаты освоения программы дисциплины соответствуют базовому уровню в соответствии с установленными критериями.
- Частично отвечает на дополнительные вопросы.
- Практическое задание выполнено с небольшими ошибками

Оценка «удовлетворительно»:

- Результаты освоения программы дисциплины соответствуют пороговому уровню в соответствии с установленными критериями.
- Затрудняется отвечать на дополнительные вопросы.
- Затрудняется в разработке практического задания

#### 3. Оценочные средства

## 3.1. Практические работы

**Практическая работа 1.**Знакомство с учебным робототехническим оборудованием и средами программирования.

Задание: Изучить лекционный и дополнительный материал по теме:

- 1. Выяснить перечень фирм-производителей робототехнического оборудования для системы образования и характеристики их линеек
- 2. Познакомиться с комплектацией линейки робототехнических конструкторов Лего
- 3. Изучить принципы крепления и использования деталей конструктора

## Практическая работа2. Конструирование механических передач.

#### Задание:

- 1. Изучить особенности различных типов приводов
- 2. Сконструировать ступенчатую зубчатую передачу с передаточным числом 3, 9, и противоположным направлением вращения ведущего и ведомого вала
- 3. Сконструировать коронную, реечную, червячную, кулачковую передачу с заданными характеристиками.
- 4. Вычислить передаточное число указанных ременных передач

#### Практическая работа3. Использование датчиков в соделях

Использование ультразвукового дальномера и гироскопа, реализация обратной связи управления роботом

# Задание:

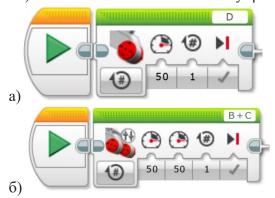
- 1. Изучить специфику работы датчиков
- 2. Создать конструкцию робота
- 3. Написать управляющую программу, использующую обращение к датчику

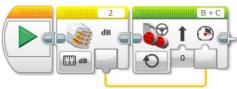
**Практическая работа4.** Знакомство с регламентами робототехнических мероприятий для школьников начальной школы.

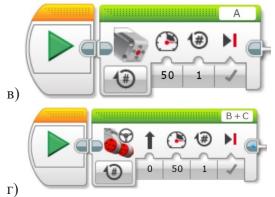
#### Запапие

- 1. Изучить регламенты конкурсных мероприятий JrFLL
- 2. Выбрать одну из предложенных тем и провести по ней исследование
- 3. Оформить постер
- 4. Сконструировать действующую модель в рамках выбранной темы
- 5. Оформить результат исследования как 1 задание контрольной работы
- 6. Защитить/представить проект

# 3.2. Темы презентации

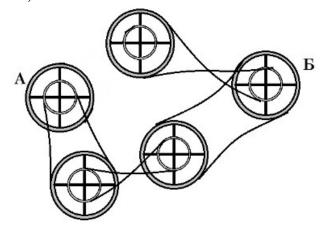

- 1. Древние роботы
- 2. Роботы средневековья
- 3. Роботы в промышленности
- 4. Роботы в сельском хозяйстве
- 5. Роботы в исследованиях
- 6. Роботы космического назначения
- 7. Роботы на службе МЧС
- 8. Использование лего-технологий в образовательной деятельности.


- 9. Робототехника в летнем лагере.
- 10. Место робототехники в технологическом образовании учащихся.
- 11. Образовательная робототехника во внеурочной деятельности.
- 12. История и перспективы образовательной робототехники.
- 13. Учимся, играем, соревнуемся на примере лего-роботов.


#### 3.3. Тестовые задания

- 1) Робот это ...
- а) автоматическое устройство. Действуя по заранее заложенной программе и получая информацию о внешнем мире от датчиков. При этом может, как и иметь связь с оператором, так и действовать автономно.
- б) устройство или система, способное выполнять заданную, чётко определённую изменяемую последовательность операций.
- в) механизм, выполняющий под управлением оператора действия(манипуляции), аналогичные действиям руки человека. Применяются при работе в опасных или трудных условиях
- 2) Робототехника это ...
- а) раздел физики, наука, изучающая движение материальных тел и взаимодействие между ними.
- б) прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства.
- в) наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений.
- 3) Какая операционная система стоит на модуле EV3?
- a) Windows
- б) МасОС
- в) Linux
- г) MsDOS
- 4) Укажите шину, отвечающую за передачу данных между устройствами?
- а) Шина данных
- б) Шина адреса
- в) Шина управления
- 5) Сколько датчиков можно подключить к контролеру EV3 без использования мультиплексора?
- a) 6
- б) 8
- B) 4
- г) 3
- $\pi$ ) 5
- 6) Какой датчик EV3 является аналоговым?
- а) датчик цвета
- б) гироскопический датчик
- в) датчик касания
- г) ультразвуковой датчик
- Д) инфракрасный датчик и маяк
- 7) Датчик цвета это
- а) это аналоговый датчик, который может определять, когда красная кнопка датчика нажата, а когда отпущена.
- б) это цифровой датчик, который обнаруживает вращательное движение по одной оси.
- в) это цифровой датчик, который может обнаруживать инфракрасный цвет, отраженный от сплошных объектов.
- г) это цифровой датчик, который может определять цвет или яркость света.
- 8) Какое количество цветов может достоверно определять контроллер EV3?
- a) 8

- б) 32
- в) 7
- г)10
- 9) Датчик касания подключается к модулю EV3 через порт....
- a) A12C34
- б) B123CD
- в) CAF12E
- г) DC2BA4
- д) 1234
- 10) Какой порт по умолчанию назначается датчикам базового комплекта
- a) 1 \_\_\_\_\_
- 6) 2 -
- в) 3 -
- r) 4 -
- 11) Какой порт по умолчанию программное обеспечение назначает среднему мотору?
- a) A
- б) В
- **B)** C
- г) D
- 12) Какой оператор нужно использовать для повторения фрагмента программы?
- а) Ожидание
- б) Цикл
- в) Переключатель
- г) Прерывание
- 13) Какие действия будут выполняться при запуске этого участка программы?
- а) Обнаружение черты
- б) Управление по звуку
- в) Определение расстояния
- 14) Что из перечисленных устройств, подключенных к программируемому контроллеру робота, является устройством ввода информации:
- а) электродвигатель
- б) датчик освещенности
- в) сервопривод
- 15) В чем преимущество среднего мотора, в сравнении с большим мотором.
- а) Скорость реакции выше
- б) Больше мощности
- в) Наличие датчика вращения
- г) Два одинаковых мотора могут координировать работу
- 16) Отметьте блок независимого управления








- 17) Дополнительную информацию в программном обеспечении EV3 можно найти в разделе.....
- а) инструменты
- б) файл
- в) редактировать
- г) справка
- д) на сайте lego.com
- 18) Сколько батареек и какого типа необходимо для питания модуля EV3?
- а) 6 штук типа АА
- б) 6 штук типа ААА
- в) 4 штуки типа АА
- г) 4 штуки типа ААА
- д) 5 штук типа АА
- 19) Сколько оборотов сделает колесо, при прямой передаче, если ступица двигателя делает оборот на  $360^{\circ}$
- a) 2
- б)3
- в) 1
- $\Gamma$ ) ½
- 20) На какое расстояние переместится робот, если колесо соединено с двигателем повышающей зубчатой передачей с передаточным числом 1:5, если ступица двигателя делает оборот на 720°
- 21) В каком режиме датчик цвета горит синей подсветкой?
- а) «Яркость отраженного света»
- б) «Яркость внешнего освещения»
- в) «Цвет»
- 22) Какие действия будут выполняться согласно изображению программного блока?
- а) Робот проедет вперед со скоростью 50, один оборот колеса.
- б) Робот будет двигаться назад со скоростью 50, один оборот колеса.
- в) Робот будет вращаться на месте со скоростью 50, один оборот колеса против часовой стрелки
- г) Робот будет вращаться на месте со скоростью 50, один оборот колеса по часовой стрелке
- 23) Какое наибольшее расстояние, на котором ультразвуковой датчик может обнаружить объект?
- а) 100 см.
- б) 1 м.
- в) 3 м.
- г) 250 см.
- 24) поименованная, либо адресуемая иным способом область памяти, адрес которой можно использовать для осуществления доступа к данным и изменять значение в ходе выполнения программы это...
- а) константа

- б) логическая операция
- в) цикл
- г) переменная
- 25) В какой из механических передач движение осуществляется за счет трения?
- а) Ременная
- б) Зубчатая
- в) Червячная
- г) Цепные
- 26) Что такое регулятор в робототехнике?
- 27) Какие базовые типы регуляторов существуют и в чем их суть
- 28) На каких траекториях можно использовать пропорциональный регулятор?
- 29) Какое максимальное значение переменных можно использовать в блоке математики?
- 30) В каких режимах может работать блок «переменная»?
- 31) Определите, в какую сторону крутится шкив Б (большой), если известно, что шкив А (большой) крутится по часовой стрелке. В Бланк ответов запишите сторону (по часовой стрелке или против часовой стрелки).



32) и т.д.

#### 3.3. Вопросы к экзамену

- 1. Предпосылки возникновения и основные исторические этапы развития робототехники
- 2. Применение роботизированных систем в различных областях человеческой деятельности
- 3. Потенциал образовательной робототехники
- 4. Основные подсистемы учебного робота
- 5. Основные виды механической передачи и их характеристики: осевая, зубчатая
- 6. Основные виды механической передачи и их характеристики: ременная, кулачковая
- 7. Основные виды механической передачи и их характеристики: червячная, фрикционная
- 8. Редуктор с заданными параметрами
- 9. Физические основы конструирования мобильных роботов
- **10.** Основы потокового программирования: среда LMWeDo
- 11. Основы потокового программирования: среда LMWeDo 2.0
- **12.** Основы потокового программирования: среда LMEV3
- 13. Управление мобильной платформой с системой мотор-колесо
- 14. Информационная подсистема, типы датчиков
- 15. Основы функционирования датчиков звука
- 16. Основы функционирования датчиков касания
- 17. Основы функционирования датчиков ультразвука
- 18. Основы функционирования датчиков света,

- 19. Основы функционирования датчиков цвета,
- 20. Основы функционирования инфракрасного датчика,
- **21.** Основы потокового программирования: среда LMWeDo 2.0
- **22.** Дидактические возможности среды LMEV3 (создание уроков)
- 23. Теоретические основы реализации релейного регулятора.
- 24. Теоретические основы реализации пропорционального регулятора
- 25. Творческие конкурсы для школьников по робототехнике
- 26. Олимпиадные мероприятия для школьников по робототехнике
- 27. Система дополнительного образования школьников в области робототехники